Assuring AI/ML-readiness of digital pathology in diverse existing and emerging multi-omic datasets through quality control workflows

通过质量控制工作流程,确保现有和新兴的多组学数据集中数字病理学的 AI/ML 就绪性

基本信息

  • 批准号:
    10841333
  • 负责人:
  • 金额:
    $ 27万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-09-14 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

Abstract In an era of multi-omics, histology remains an essential approach for basic, translational, and clinical research providing valuable, low-cost, and non-destructive information about tissue morphology. The adoption of whole slide imaging (WSI) and digital pathology (DP) has led to large clinical and research repositories being instantiated for computational data mining of image-based biomarkers associated with genotype, diagnosis, prognosis, and therapy response. Importantly, data quality plays a critical role in the usage of these WSI, especially when employing artificial intelligence (AI) and machine learning (ML) methods. Artifacts and batch effects may arise at many points in the process from biopsy to digitization, and while several tools to detect them have been developed, consistent application and reporting are lacking, with none being routinely applied in public repositories. This leaves a unique opportunity to immediately provide added value to existing and future NIH- supported datasets. This proposal sees a collaboration between Sage Bionetworks, experts in FAIR data sharing and Team Science, and Dr. Andrew Janowczyk, a leader in automated quality control (QC) of WSI who has spearheaded the development of an open-source DP QC tool, HistoQC. We propose to enhance the AI/ML readiness of existing and future DP data by providing transparent, reproducible, reporting of detected imaging artifacts and batch effects within NIH-sponsored datasets in an automated fashion via the extension of our existing QC workflows. Implementing transparent reporting of DP data quality will enable researchers to exclude artifacts from their training sets in a consistent cross-investigator manner. Our work will provide greater trust in dataset reuse and experimental reproducibility while also easing AI/ML model creation and enhancing their performance. We will build on strong preliminary data and prototypes, demonstrating both significantly improved cross-reader QC reproducibility and technical feasibility, with three specific aims. Aim 1 sees this enrichment process will be applied to WSI from NIH-supported public datasets, including TCGA and GTEx, and for NIH/NCI Division of Cancer Biology research programs supported by the Multi-Consortia Coordinating (MC2) Center parent grant. Aim 2 employs the lessons learned from the enhancement of raw DP data to be AI/ML ready in Aim 1 to deploy a scalable workflow for QC of all incoming DP data from MC2-supported programs, providing continual prospective data enrichment to assure AI/ML readiness. Lastly, Aim 3 demonstrates enhanced AI/ML readiness of DP data subjected to our automated QC processes using a prototypical self-supervised tissue classification task. Our deliverables include (a) 5000 WSI annotated by our QC workflow and enhanced into AI/ML ready datasets; (b) workflows to enable processing of incoming datasets for AI-readiness, (c) a failure rate of identifying poor quality slides is <1%; and (d) our QC comparative AI/ML demonstration yields an improvement of >10% performance in terms of tissue classification performance as a result of our data enhancements.
摘要

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Julie Ann Bletz其他文献

Julie Ann Bletz的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Julie Ann Bletz', 18)}}的其他基金

Multi-Consortia Coordinating Center (MC2 Center) for Cancer Biology: Building Interdisciplinary Scientific Communities, Coordinating Impactful Resource Sharing, and Advancing Cancer Research
癌症生物学多联盟协调中心(MC2 中心):建立跨学科科学社区、协调有影响力的资源共享并推进癌症研究
  • 批准号:
    10525124
  • 财政年份:
    2022
  • 资助金额:
    $ 27万
  • 项目类别:
Spatial Transcriptomics Explorer (STE): An open-source resource for visualizing spatial gene expression data
Spatial Transcriptomics Explorer (STE):用于可视化空间基因表达数据的开源资源
  • 批准号:
    10830668
  • 财政年份:
    2022
  • 资助金额:
    $ 27万
  • 项目类别:
Coordinating Sustainable Open Resource Sharing and Collaboration in Cancer Research
协调癌症研究中的可持续开放资源共享与合作
  • 批准号:
    10400971
  • 财政年份:
    2016
  • 资助金额:
    $ 27万
  • 项目类别:
An antiviral role for poly(ADP-ribosyl)ation
聚(ADP-核糖基)化的抗病毒作用
  • 批准号:
    7407068
  • 财政年份:
    2008
  • 资助金额:
    $ 27万
  • 项目类别:

相似国自然基金

层出镰刀菌氮代谢调控因子AreA 介导伏马菌素 FB1 生物合成的作用机理
  • 批准号:
    2021JJ40433
  • 批准年份:
    2021
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
寄主诱导梢腐病菌AreA和CYP51基因沉默增强甘蔗抗病性机制解析
  • 批准号:
    32001603
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
AREA国际经济模型的移植.改进和应用
  • 批准号:
    18870435
  • 批准年份:
    1988
  • 资助金额:
    2.0 万元
  • 项目类别:
    面上项目

相似海外基金

Onboarding Rural Area Mathematics and Physical Science Scholars
农村地区数学和物理科学学者的入职
  • 批准号:
    2322614
  • 财政年份:
    2024
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
Point-scanning confocal with area detector
点扫描共焦与区域检测器
  • 批准号:
    534092360
  • 财政年份:
    2024
  • 资助金额:
    $ 27万
  • 项目类别:
    Major Research Instrumentation
TRACK-UK: Synthesized Census and Small Area Statistics for Transport and Energy
TRACK-UK:交通和能源综合人口普查和小区域统计
  • 批准号:
    ES/Z50290X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 27万
  • 项目类别:
    Research Grant
Wide-area low-cost sustainable ocean temperature and velocity structure extraction using distributed fibre optic sensing within legacy seafloor cables
使用传统海底电缆中的分布式光纤传感进行广域低成本可持续海洋温度和速度结构提取
  • 批准号:
    NE/Y003365/1
  • 财政年份:
    2024
  • 资助金额:
    $ 27万
  • 项目类别:
    Research Grant
Collaborative Research: Scalable Manufacturing of Large-Area Thin Films of Metal-Organic Frameworks for Separations Applications
合作研究:用于分离应用的大面积金属有机框架薄膜的可扩展制造
  • 批准号:
    2326714
  • 财政年份:
    2024
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
RAPID: Collaborative Research: Multifaceted Data Collection on the Aftermath of the March 26, 2024 Francis Scott Key Bridge Collapse in the DC-Maryland-Virginia Area
RAPID:协作研究:2024 年 3 月 26 日 DC-马里兰-弗吉尼亚地区 Francis Scott Key 大桥倒塌事故后果的多方面数据收集
  • 批准号:
    2427233
  • 财政年份:
    2024
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
Collaborative Research: Scalable Manufacturing of Large-Area Thin Films of Metal-Organic Frameworks for Separations Applications
合作研究:用于分离应用的大面积金属有机框架薄膜的可扩展制造
  • 批准号:
    2326713
  • 财政年份:
    2024
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
Unlicensed Low-Power Wide Area Networks for Location-based Services
用于基于位置的服务的免许可低功耗广域网
  • 批准号:
    24K20765
  • 财政年份:
    2024
  • 资助金额:
    $ 27万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
RAPID: Collaborative Research: Multifaceted Data Collection on the Aftermath of the March 26, 2024 Francis Scott Key Bridge Collapse in the DC-Maryland-Virginia Area
RAPID:协作研究:2024 年 3 月 26 日 DC-马里兰-弗吉尼亚地区 Francis Scott Key 大桥倒塌事故后果的多方面数据收集
  • 批准号:
    2427232
  • 财政年份:
    2024
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
RAPID: Collaborative Research: Multifaceted Data Collection on the Aftermath of the March 26, 2024 Francis Scott Key Bridge Collapse in the DC-Maryland-Virginia Area
RAPID:协作研究:2024 年 3 月 26 日 DC-马里兰-弗吉尼亚地区 Francis Scott Key 大桥倒塌事故后果的多方面数据收集
  • 批准号:
    2427231
  • 财政年份:
    2024
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了