Ding R01 Administrative Supplement
丁R01行政补遗
基本信息
- 批准号:10842657
- 负责人:
- 金额:$ 19.48万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-01 至 2026-05-31
- 项目状态:未结题
- 来源:
- 关键词:Administrative SupplementArtificial IntelligenceAssociation LearningAttentionAwardBehavioralClinicalCognitiveDataData AnalysesData ReportingData SetData SourcesDiagnosticDiagnostic ProcedureExcisionExperimental PsychologyExtinctionFAIR principlesFaceFrightGalvanic Skin ResponseGoalsHeart RateInfrastructureInterventionLearningLinkMachine LearningMeasuresMental disordersMethodsModelingMorphologic artifactsNeurosciencesParentsPathologyPatient Self-ReportPhysiologicalProtocols documentationSourceTestingVisualcomputerized data processingconditioned feardata managementdenoisingdesignfunctional magnetic resonance imaging/electroencephalographyinnovationinsightlearning outcomemultimodalitymultiscale dataneuralneuroimagingneuromechanismneurophysiologynovelrepositoryresponsetimeline
项目摘要
Project Summary: The parent award (R01MH125615) of this supplement application seeks to investigate the
neural mechanisms of learning and un-learning of a fear response through fear conditioning and fear extinction.
The goal is to advance our understanding of how visual and attention networks interact during associative
learning as well as to inform clinical intervention and diagnostic procedures in a variety of psychiatric disorders
where fear is a transdiagnostic pathology. A large multimodal/multiscale neuroimaging dataset, which includes
simultaneous EEG-fMRI, physiological measures such as heart rate and skin conductance, as well as behavioral
and self-report data, is being acquired according to the proposed timeline.
Recent advances in AI/ML are beginning to revolutionize neuroimaging and neural data analysis. We seek
to leverage these advances to enable innovative testing of our hypotheses. Readying our multimodal/
multiscale data for AI/ML, however, faces challenges. The goal of this administrative supplement is to
bring together expertise in data management, data processing, AI/ML, and neuroscience/experimental
psychology to meet these challenges.
Two aims will be pursued. The objective of Aim 1 is to build an infrastructure for preparing the
multimodal/multiscale data for AI/ML analysis and sharing. Specifically, we will develop protocols for data
denoising, imputation, pre-processing, bias correction, artifact removal, normalization, and harmonization and
establish pipelines to integrate and consolidate data from different data sources into a unifying repository for
analysis and sharing according to the FAIR principle. The objective of Aim 2 is to design a novel AI-driven
platform for analyzing multimodal/multiscale data. Specifically, we will develop a transformer-based platform to
enable multimodal learning from diverse sources of data and link the outcomes of learning with the proposed
cognitive/neurophysiological model to enable the innovative testing of the hypotheses in the parent award.
项目摘要:本补充申请的母合同(R 01 MH 125615)旨在调查
通过恐惧条件反射和恐惧消退学习和不学习恐惧反应的神经机制。
我们的目标是推进我们对视觉和注意力网络在联想过程中如何相互作用的理解。
学习以及告知各种精神疾病的临床干预和诊断程序
恐惧是一种跨诊断病理学大型多模态/多尺度神经成像数据集,其中包括
同步EEG-fMRI,生理测量,如心率和皮肤电导,以及行为
和自我报告数据,正在根据拟议的时间轴获取。
AI/ML的最新进展开始彻底改变神经成像和神经数据分析。我们寻求
利用这些进步来实现对我们假设的创新测试。准备我们的多式联运/
然而,AI/ML的多尺度数据面临挑战。这一行政补充的目的是
汇集数据管理、数据处理、人工智能/机器学习和神经科学/实验方面的专业知识
心理学来应对这些挑战。
将追求两个目标。目标1的目标是建立一个基础设施,
用于AI/ML分析和共享的多模态/多尺度数据。具体来说,我们将制定数据协议,
去噪、插补、预处理、偏差校正、伪影去除、归一化和协调,
建立管道,将来自不同数据源的数据整合到统一的存储库中,
根据公平原则进行分析和分享。Aim 2的目标是设计一种新的AI驱动的
多模式/多尺度数据分析平台。具体来说,我们将开发一个基于transformer的平台,
从不同的数据源进行多模式学习,并将学习结果与建议的
认知/神经生理学模型,以实现对父母奖励中假设的创新测试。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MINGZHOU DING其他文献
MINGZHOU DING的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MINGZHOU DING', 18)}}的其他基金
Acquisition, extinction, and recall of attention biases to threat: Computational modeling and multimodal brain imaging
对威胁的注意偏差的获得、消除和回忆:计算模型和多模态脑成像
- 批准号:
10459607 - 财政年份:2021
- 资助金额:
$ 19.48万 - 项目类别:
Acquisition, extinction, and recall of attention biases to threat: Computational modeling and multimodal brain imaging
对威胁的注意偏差的获得、消除和回忆:计算模型和多模态脑成像
- 批准号:
10629385 - 财政年份:2021
- 资助金额:
$ 19.48万 - 项目类别:
Acquisition, extinction, and recall of attention biases to threat: Computational modeling and multimodal brain imaging
对威胁的注意偏差的获得、消除和回忆:计算模型和多模态脑成像
- 批准号:
10296986 - 财政年份:2021
- 资助金额:
$ 19.48万 - 项目类别:
Mechanisms of attentional control: Structure and dynamics from simultaneous EEG-fMRI and machine learning
注意力控制机制:同步脑电图-功能磁共振成像和机器学习的结构和动力学
- 批准号:
10368957 - 财政年份:2018
- 资助金额:
$ 19.48万 - 项目类别:
Mechanisms of attentional control: Structure and dynamics from simultaneous EEG-fMRI and machine learning
注意力控制机制:同步脑电图-功能磁共振成像和机器学习的结构和动力学
- 批准号:
10115818 - 财政年份:2018
- 资助金额:
$ 19.48万 - 项目类别:
Emotional Engagement Driven by Complex Visual Stimuli: Neural Dynamics Revealed by Multimodal Imaging
复杂视觉刺激驱动的情感参与:多模态成像揭示的神经动力学
- 批准号:
9883648 - 财政年份:2017
- 资助金额:
$ 19.48万 - 项目类别:
Spatiotemporal Network Dynamics in a Rat Model of Schizophrenia
精神分裂症大鼠模型中的时空网络动力学
- 批准号:
8720463 - 财政年份:2014
- 资助金额:
$ 19.48万 - 项目类别:
Spatiotemporal Network Dynamics in a Rat Model of Schizophrenia
精神分裂症大鼠模型中的时空网络动力学
- 批准号:
8826825 - 财政年份:2014
- 资助金额:
$ 19.48万 - 项目类别:
相似海外基金
TRUST2 - Improving TRUST in artificial intelligence and machine learning for critical building management
TRUST2 - 提高关键建筑管理的人工智能和机器学习的信任度
- 批准号:
10093095 - 财政年份:2024
- 资助金额:
$ 19.48万 - 项目类别:
Collaborative R&D
QUANTUM-TOX - Revolutionizing Computational Toxicology with Electronic Structure Descriptors and Artificial Intelligence
QUANTUM-TOX - 利用电子结构描述符和人工智能彻底改变计算毒理学
- 批准号:
10106704 - 财政年份:2024
- 资助金额:
$ 19.48万 - 项目类别:
EU-Funded
Artificial intelligence in education: Democratising policy
教育中的人工智能:政策民主化
- 批准号:
DP240100602 - 财政年份:2024
- 资助金额:
$ 19.48万 - 项目类别:
Discovery Projects
Application of artificial intelligence to predict biologic systemic therapy clinical response, effectiveness and adverse events in psoriasis
应用人工智能预测生物系统治疗银屑病的临床反应、有效性和不良事件
- 批准号:
MR/Y009657/1 - 财政年份:2024
- 资助金额:
$ 19.48万 - 项目类别:
Fellowship
REU Site: CyberAI: Cybersecurity Solutions Leveraging Artificial Intelligence for Smart Systems
REU 网站:CyberAI:利用人工智能实现智能系统的网络安全解决方案
- 批准号:
2349104 - 财政年份:2024
- 资助金额:
$ 19.48万 - 项目类别:
Standard Grant
EAGER: Artificial Intelligence to Understand Engineering Cultural Norms
EAGER:人工智能理解工程文化规范
- 批准号:
2342384 - 财政年份:2024
- 资助金额:
$ 19.48万 - 项目类别:
Standard Grant
Reversible Computing and Reservoir Computing with Magnetic Skyrmions for Energy-Efficient Boolean Logic and Artificial Intelligence Hardware
用于节能布尔逻辑和人工智能硬件的磁斯格明子可逆计算和储层计算
- 批准号:
2343607 - 财政年份:2024
- 资助金额:
$ 19.48万 - 项目类别:
Standard Grant
I-Corps: Translation Potential of a Secure Data Platform Empowering Artificial Intelligence Assisted Digital Pathology
I-Corps:安全数据平台的翻译潜力,赋能人工智能辅助数字病理学
- 批准号:
2409130 - 财政年份:2024
- 资助金额:
$ 19.48万 - 项目类别:
Standard Grant
Planning: Artificial Intelligence Assisted High-Performance Parallel Computing for Power System Optimization
规划:人工智能辅助高性能并行计算电力系统优化
- 批准号:
2414141 - 财政年份:2024
- 资助金额:
$ 19.48万 - 项目类别:
Standard Grant
Reassessing the Appropriateness of currently-available Data-set Protection Levers in the era of Artificial Intelligence
重新评估人工智能时代现有数据集保护手段的适用性
- 批准号:
23K22068 - 财政年份:2024
- 资助金额:
$ 19.48万 - 项目类别:
Grant-in-Aid for Scientific Research (B)














{{item.name}}会员




