Cholesterol Regulation of Endothelial K+ Channels
内皮 K 通道的胆固醇调节
基本信息
- 批准号:10836797
- 负责人:
- 金额:$ 8.26万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-12-06 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAortaApolipoprotein EAtherosclerosisBindingBinding SitesBiochemicalBlood VesselsCardiovascular DiseasesCell LineCellsCessation of lifeCholesterolClustered Regularly Interspaced Short Palindromic RepeatsComplexCytoskeletonDataDependovirusDescending aortaDevelopmentDown-RegulationDyslipidemiasElectrophysiology (science)Endothelial CellsEndotheliumFunctional disorderFundingGene ExpressionGeneticGoalsGrainGrantHigh Density LipoproteinsHumanHydrophobicityImpairmentIn VitroIndividualInjuryIon ChannelKDR geneKir2.1 channelLesionLow-Density LipoproteinsMediatingModelingMolecularMonomeric GTP-Binding ProteinsMorbidity - disease rateMusMutationNeutronsPECAM1 genePIK3CG genePhenotypePhospholipidsPhosphorylationPlasmaPlayPotassium ChannelProcessProteinsRadiolabeledRegulationResearchRisk FactorsRoleSignal TransductionSite-Directed MutagenesisTestingThinnessTransgenic ModelTransgenic OrganismsTranslatingTransmembrane DomainVasodilationWomanatheroprotectivecomputer studiesendothelial dysfunctiongain of functionhypercholesterolemiain vivoinsightinward rectifier potassium channelloss of functionmenmolecular dynamicsmolecular scalemouse modelmutantnovelnovel therapeutic interventionoverexpressionpredictive modelingresponsesimulationtranscriptome sequencing
项目摘要
Dyslipidemia-induced endothelial dysfunction plays a major role in the initiation of atherosclerosis. Our
studies discovered that plasma hypercholesterolemia results in suppression of endothelial inwardly-
rectifying K+ (Kir) channels and that Kir channels play a major role in endothelial response to flow. Our long
term goal is to elucidate the mechanisms responsible for cholesterol-induced regulation of endothelial ion
channels and determine the impact of cholesterol-induced suppression of Kir on vascular function and
atherosclerosis development. During the previous funding period of this grant, we discovered a new mode
of cholesterol-Kir2 interactions via multiple dynamic contacts, provided direct evidence that Kir2.1 plays a
crucial role in flow-induced vasodilation and NO release, and showed that hypercholesterolemia-induced
impairment of flow-induced vasodilation can be attributed to Kir2.1 suppression. In the current proposal, we
extend these studies to address three new goals: In Aim 1, we address the fundamental question of how
cholesterol binding to the specific binding sites that we have already identified translates into the inhibition
of channel gating. Specifically, we address a novel hypothesis based on our computational studies
predicting that cholesterol binding uncouples specific residues within the channels, crucial for the gating
process. This hypothesis will be addressed using a combination of multi-scale Molecular Dynamics
simulations, a state-of-the-art computational approach, followed by site-directed mutagenesis, functional
analysis of the channel function by high throughput electrophysiology, and biochemical and neutron
scattering studies to evaluate direct cholesterol interactions with Kir2 channels. In Aim 2, we will extend our
studies to determine the role of cholesterol suppression of Kir2.1 in two major endothelial flow responses: 1)
activation of PECAM1/Src/VEGFR2/PI3K/Akt signaling axis and 2) cytoskeleton remodeling. This aim is
based on our RNA sequencing analysis that revealed a major role of Kir2.1 in flow-sensitive gene
expression including the expression of PECAM1/VEGFR2 mechanosensor complex. Specifically, we will
test the hypothesis that suppression of endothelial Kir channels by hypercholesterolemic conditions impairs
flow-induced activation of VEGFR2 and activation of a small GTPase, RhoA, and alters flow-induced
cytoskeletal remodeling. Finally, in Aim 3, we will determine the role of endothelial Kir2.1 in lesion formation
of dyslipidemic mice. We have already established that the global deficiency of Kir2.1 exaggerates lesion
formation in dyslipidemic ApoE-/- mice. In the proposed study, we will determine if the effect is specific for
endothelial Kir2.1. Furthermore, we will also employ a new model of Kir2.1 rescue, a transgenic CRISPR
mouse that expresses a cholesterol-insensitive Kir2.1 mutant. We believe that taken together, these studies
will make a significant contribution to the understanding of cholesterol regulation of ion channels,
dyslipidemia-induced endothelial dysfunction, and the mechanisms of lesion formation.
血脂异常诱导的内皮功能障碍在动脉粥样硬化的开始中起主要作用。我们的
研究发现,血浆高胆固醇血症会导致内皮抑制内皮
纠正K+(KIR)通道,并且KIR通道在对流动的内皮反应中起着重要作用。我们的漫长
术语目标是阐明负责胆固醇诱导的内皮离子调节的机制
通道并确定胆固醇诱导的KIR抑制对血管功能的影响
动脉粥样硬化的发展。在这笔赠款的前几个资金期间,我们发现了一种新模式
通过多个动态接触的胆固醇-KIR2相互作用的相互作用提供了直接证据,表明Kir2.1扮演A
在流动诱导的血管舒张中至关重要的作用,无释放,表明高胆固醇诱导的
流动诱导的血管舒张的损害可以归因于KIR2.1抑制。在当前的提议中,我们
扩展这些研究以解决三个新目标:在AIM 1中,我们解决了如何解决的基本问题
胆固醇与我们已经确定的特定结合位点结合,转化为抑制作用
通道门控。具体而言,我们根据计算研究解决了一个新的假设
预测胆固醇结合在通道内的特定残基,对于门控至关重要
过程。该假设将使用多尺度分子动力学的组合来解决
模拟是一种最先进的计算方法,然后进行站点定向的诱变,功能性
通过高吞吐量电生理学以及生化和中子来分析通道功能
散射研究以评估与KIR2通道的直接胆固醇相互作用。在AIM 2中,我们将扩展我们的
研究确定Kir2.1胆固醇在两个主要的内皮流动反应中的作用:1)
PECAM1/SRC/VEGFR2/PI3K/AKT信号轴的激活和2)细胞骨架重塑。这个目标是
基于我们的RNA测序分析,该分析揭示了KIR2.1在流敏基因中的主要作用
表达包括PECAM1/VEGFR2机械传感器复合物的表达。具体来说,我们会的
检验以下假设,即高胆固醇疾病抑制内皮的KIR通道损害
流动诱导的VEGFR2激活以及小的GTPase,RhoA和变化流动诱导的激活
细胞骨架重塑。最后,在AIM 3中,我们将确定内皮Kir2.1在病变形成中的作用
血脂性小鼠的。我们已经确定,kir2.1的全球缺陷夸大了病变
血脂血症APOE - / - 小鼠中的形成。在拟议的研究中,我们将确定效果是否特定于
内皮kir2.1。此外,我们还将采用一种新模型Kir2.1 Rescue,一种转基因CRISPR
表达胆固醇不敏感的KIR2.1突变体的小鼠。我们认为这是这些研究
将对理解离子通道的胆固醇调节做出重大贡献,
血脂异常引起的内皮功能障碍以及病变形成的机制。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The effect of cellular cholesterol on membrane-cytoskeleton adhesion.
细胞胆固醇对膜细胞骨架粘附的影响。
- DOI:10.1242/jcs.001370
- 发表时间:2007
- 期刊:
- 影响因子:4
- 作者:Sun,Mingzhai;Northup,Nathan;Marga,Francoise;Huber,Tamas;Byfield,FitzroyJ;Levitan,Irena;Forgacs,Gabor
- 通讯作者:Forgacs,Gabor
On, in, and under membrane.
膜上、膜内和膜下。
- DOI:10.1016/s1063-5823(21)00040-5
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Model,MichaelA;Levitan,Irena
- 通讯作者:Levitan,Irena
Microvascular Vasodilator Plasticity After Acute Exercise.
- DOI:10.1249/jes.0000000000000130
- 发表时间:2018-01
- 期刊:
- 影响因子:5.7
- 作者:Robinson AT;Fancher IS;Mahmoud AM;Phillips SA
- 通讯作者:Phillips SA
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Irena Levitan其他文献
Irena Levitan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Irena Levitan', 18)}}的其他基金
Microvascular endothelial Kir channels in flow-induced dilation and hypertension
微血管内皮 Kir 通道在血流引起的扩张和高血压中的作用
- 批准号:
10392398 - 财政年份:2019
- 资助金额:
$ 8.26万 - 项目类别:
Microvascular endothelial Kir channels in flow-induced dilation and hypertension
微血管内皮 Kir 通道在血流引起的扩张和高血压中的作用
- 批准号:
9917815 - 财政年份:2019
- 资助金额:
$ 8.26万 - 项目类别:
Impact of dyslipidemia on endothelial biomechanics
血脂异常对内皮生物力学的影响
- 批准号:
7877943 - 财政年份:2007
- 资助金额:
$ 8.26万 - 项目类别:
Impact of dyslipidemia on endothelial biomechanics
血脂异常对内皮生物力学的影响
- 批准号:
9041643 - 财政年份:2007
- 资助金额:
$ 8.26万 - 项目类别:
Impact of dyslipidemia on endothelial biomechanics
血脂异常对内皮生物力学的影响
- 批准号:
10201709 - 财政年份:2007
- 资助金额:
$ 8.26万 - 项目类别:
Impact of dyslipidemia on endothelial biomechanics
血脂异常对内皮生物力学的影响
- 批准号:
7492115 - 财政年份:2007
- 资助金额:
$ 8.26万 - 项目类别:
Impact of dyslipidemia on endothelial biomechanics
血脂异常对内皮生物力学的影响
- 批准号:
9789917 - 财政年份:2007
- 资助金额:
$ 8.26万 - 项目类别:
Impact of dyslipidemia on endothelial biomechanics
血脂异常对内皮生物力学的影响
- 批准号:
7321162 - 财政年份:2007
- 资助金额:
$ 8.26万 - 项目类别:
Impact of dyslipidemia on endothelial biomechanics
血脂异常对内皮生物力学的影响
- 批准号:
7643248 - 财政年份:2007
- 资助金额:
$ 8.26万 - 项目类别:
相似国自然基金
ANGPTL4促进血管平滑肌细胞衰老对急性Stanford A型主动脉夹层的作用及其机制
- 批准号:82371582
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
金属硫蛋白MT3通过锌稳态促进GPX4表达抑制平滑肌细胞铁死亡和主动脉夹层的机制研究
- 批准号:82300551
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
SEPT2巯基亚硝基化修饰调控巨噬细胞活化参与主动脉夹层的机制研究
- 批准号:82370491
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
二叶式主动脉瓣人群经导管主动脉瓣置换术后瓣周漏的风险因素分析及生物力学机理研究
- 批准号:82370375
- 批准年份:2023
- 资助金额:60 万元
- 项目类别:面上项目
二甲基化促进棕榈酰化修饰调控DPP4蛋白酶活性在主动脉瓣钙化中的作用及机制研究
- 批准号:82370379
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Novel Bioresorbable Vascular Scaffolds with Uniform Biodegradation
具有均匀生物降解性的新型生物可吸收血管支架
- 批准号:
10930188 - 财政年份:2023
- 资助金额:
$ 8.26万 - 项目类别:
TCF21 is a causal coronary artery disease gene that modulates coronary smooth muscle phenotypic transition via epigenetic mechanisms
TCF21 是一种致病性冠状动脉疾病基因,可通过表观遗传机制调节冠状动脉平滑肌表型转变
- 批准号:
10874376 - 财政年份:2022
- 资助金额:
$ 8.26万 - 项目类别:
Randomized Comparison of the Clinical Outcome of Single Versus Multiple Arterial Grafts: Cognition (ROMA:Cog)
单动脉移植与多动脉移植临床结果的随机比较:认知 (ROMA:Cog)
- 批准号:
10777194 - 财政年份:2021
- 资助金额:
$ 8.26万 - 项目类别:
Development of multifunctional drug and immune modulator delivery nanoparticles for the treatment of cancer patients with comorbid atherosclerosis
开发多功能药物和免疫调节剂递送纳米粒子,用于治疗患有动脉粥样硬化的癌症患者
- 批准号:
10548149 - 财政年份:2021
- 资助金额:
$ 8.26万 - 项目类别: