Cholesterol Regulation of Endothelial K+ Channels
内皮 K 通道的胆固醇调节
基本信息
- 批准号:10836797
- 负责人:
- 金额:$ 8.26万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-12-06 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAortaApolipoprotein EAtherosclerosisBindingBinding SitesBiochemicalBlood VesselsCardiovascular DiseasesCell LineCellsCessation of lifeCholesterolClustered Regularly Interspaced Short Palindromic RepeatsComplexCytoskeletonDataDependovirusDescending aortaDevelopmentDown-RegulationDyslipidemiasElectrophysiology (science)Endothelial CellsEndotheliumFunctional disorderFundingGene ExpressionGeneticGoalsGrainGrantHigh Density LipoproteinsHumanHydrophobicityImpairmentIn VitroIndividualInjuryIon ChannelKDR geneKir2.1 channelLesionLow-Density LipoproteinsMediatingModelingMolecularMonomeric GTP-Binding ProteinsMorbidity - disease rateMusMutationNeutronsPECAM1 genePIK3CG genePhenotypePhospholipidsPhosphorylationPlasmaPlayPotassium ChannelProcessProteinsRadiolabeledRegulationResearchRisk FactorsRoleSignal TransductionSite-Directed MutagenesisTestingThinnessTransgenic ModelTransgenic OrganismsTranslatingTransmembrane DomainVasodilationWomanatheroprotectivecomputer studiesendothelial dysfunctiongain of functionhypercholesterolemiain vivoinsightinward rectifier potassium channelloss of functionmenmolecular dynamicsmolecular scalemouse modelmutantnovelnovel therapeutic interventionoverexpressionpredictive modelingresponsesimulationtranscriptome sequencing
项目摘要
Dyslipidemia-induced endothelial dysfunction plays a major role in the initiation of atherosclerosis. Our
studies discovered that plasma hypercholesterolemia results in suppression of endothelial inwardly-
rectifying K+ (Kir) channels and that Kir channels play a major role in endothelial response to flow. Our long
term goal is to elucidate the mechanisms responsible for cholesterol-induced regulation of endothelial ion
channels and determine the impact of cholesterol-induced suppression of Kir on vascular function and
atherosclerosis development. During the previous funding period of this grant, we discovered a new mode
of cholesterol-Kir2 interactions via multiple dynamic contacts, provided direct evidence that Kir2.1 plays a
crucial role in flow-induced vasodilation and NO release, and showed that hypercholesterolemia-induced
impairment of flow-induced vasodilation can be attributed to Kir2.1 suppression. In the current proposal, we
extend these studies to address three new goals: In Aim 1, we address the fundamental question of how
cholesterol binding to the specific binding sites that we have already identified translates into the inhibition
of channel gating. Specifically, we address a novel hypothesis based on our computational studies
predicting that cholesterol binding uncouples specific residues within the channels, crucial for the gating
process. This hypothesis will be addressed using a combination of multi-scale Molecular Dynamics
simulations, a state-of-the-art computational approach, followed by site-directed mutagenesis, functional
analysis of the channel function by high throughput electrophysiology, and biochemical and neutron
scattering studies to evaluate direct cholesterol interactions with Kir2 channels. In Aim 2, we will extend our
studies to determine the role of cholesterol suppression of Kir2.1 in two major endothelial flow responses: 1)
activation of PECAM1/Src/VEGFR2/PI3K/Akt signaling axis and 2) cytoskeleton remodeling. This aim is
based on our RNA sequencing analysis that revealed a major role of Kir2.1 in flow-sensitive gene
expression including the expression of PECAM1/VEGFR2 mechanosensor complex. Specifically, we will
test the hypothesis that suppression of endothelial Kir channels by hypercholesterolemic conditions impairs
flow-induced activation of VEGFR2 and activation of a small GTPase, RhoA, and alters flow-induced
cytoskeletal remodeling. Finally, in Aim 3, we will determine the role of endothelial Kir2.1 in lesion formation
of dyslipidemic mice. We have already established that the global deficiency of Kir2.1 exaggerates lesion
formation in dyslipidemic ApoE-/- mice. In the proposed study, we will determine if the effect is specific for
endothelial Kir2.1. Furthermore, we will also employ a new model of Kir2.1 rescue, a transgenic CRISPR
mouse that expresses a cholesterol-insensitive Kir2.1 mutant. We believe that taken together, these studies
will make a significant contribution to the understanding of cholesterol regulation of ion channels,
dyslipidemia-induced endothelial dysfunction, and the mechanisms of lesion formation.
血脂异常引起的内皮功能障碍在动脉粥样硬化的发生中起着重要作用。我们的
研究发现,血浆高胆固醇血症会导致内皮细胞抑制-
整流钾(KIR)通道和KIR通道在内皮细胞对血流的反应中起主要作用。我们的龙
学期目标是阐明胆固醇诱导内皮细胞离子调节的机制。
并确定胆固醇抑制KIR对血管功能和血管功能的影响
动脉粥样硬化的发展。在前一次资助期间,我们发现了一种新的模式
通过多个动态接触的胆固醇-Kir2相互作用提供了Kir2.1发挥作用的直接证据
在血流诱导的血管扩张和NO释放中起关键作用,并表明高胆固醇血症诱导
血流诱导的血管扩张功能受损可归因于Kir2.1的抑制。在目前的提案中,我们
扩展这些研究以实现三个新目标:在目标1中,我们解决如何实现以下基本问题
胆固醇与我们已经确定的特定结合部位的结合转化为抑制
频道选通。具体地说,我们在计算研究的基础上提出了一个新的假设。
预测胆固醇结合解偶联通道内的特定残基,这对门控至关重要
进程。这一假说将使用多尺度分子动力学的组合来解决
模拟,一种最先进的计算方法,随后是定点突变,功能性
用高通量电生理、生化和中子分析通道功能
散射研究以评估胆固醇与Kir2通道的直接相互作用。在目标2中,我们将扩展我们的
确定Kir2.1在两种主要的内皮血流反应中的胆固醇抑制作用的研究:1)
PECAM1/Src/VEGFR2/PI3K/Akt信号轴的激活与细胞骨架重构。这个目标是
基于我们的RNA测序分析,揭示了Kir2.1在流动敏感基因中的主要作用
表达包括PECAM1/VEGFR2机械传感器复合体的表达。具体来说,我们将
验证高胆固醇血症抑制内皮细胞KIR通道损害的假设
流动诱导的VEGFR2的激活和一种小的GTP酶RhoA的激活,并改变流动诱导的
细胞骨架重塑。最后,在目标3中,我们将确定内皮Kir2.1在病变形成中的作用
血脂异常的小鼠。我们已经证实,Kir2.1的全球缺失会夸大损伤
血脂异常ApoE-/-小鼠的形成。在拟议的研究中,我们将确定这种影响是否特定于
内皮细胞Kir2.1.此外,我们还将采用一种新的Kir2.1救援模型,转基因CRISPR
表达胆固醇不敏感Kir2.1突变体的小鼠。我们认为,这些研究放在一起
将对理解胆固醇对离子通道的调节做出重大贡献,
血脂异常引起的内皮功能障碍,以及病变形成的机制。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The effect of cellular cholesterol on membrane-cytoskeleton adhesion.
细胞胆固醇对膜细胞骨架粘附的影响。
- DOI:10.1242/jcs.001370
- 发表时间:2007
- 期刊:
- 影响因子:4
- 作者:Sun,Mingzhai;Northup,Nathan;Marga,Francoise;Huber,Tamas;Byfield,FitzroyJ;Levitan,Irena;Forgacs,Gabor
- 通讯作者:Forgacs,Gabor
On, in, and under membrane.
膜上、膜内和膜下。
- DOI:10.1016/s1063-5823(21)00040-5
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Model,MichaelA;Levitan,Irena
- 通讯作者:Levitan,Irena
Microvascular Vasodilator Plasticity After Acute Exercise.
- DOI:10.1249/jes.0000000000000130
- 发表时间:2018-01
- 期刊:
- 影响因子:5.7
- 作者:Robinson AT;Fancher IS;Mahmoud AM;Phillips SA
- 通讯作者:Phillips SA
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Irena Levitan其他文献
Irena Levitan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Irena Levitan', 18)}}的其他基金
Microvascular endothelial Kir channels in flow-induced dilation and hypertension
微血管内皮 Kir 通道在血流引起的扩张和高血压中的作用
- 批准号:
10392398 - 财政年份:2019
- 资助金额:
$ 8.26万 - 项目类别:
Microvascular endothelial Kir channels in flow-induced dilation and hypertension
微血管内皮 Kir 通道在血流引起的扩张和高血压中的作用
- 批准号:
9917815 - 财政年份:2019
- 资助金额:
$ 8.26万 - 项目类别:
Impact of dyslipidemia on endothelial biomechanics
血脂异常对内皮生物力学的影响
- 批准号:
7877943 - 财政年份:2007
- 资助金额:
$ 8.26万 - 项目类别:
Impact of dyslipidemia on endothelial biomechanics
血脂异常对内皮生物力学的影响
- 批准号:
9041643 - 财政年份:2007
- 资助金额:
$ 8.26万 - 项目类别:
Impact of dyslipidemia on endothelial biomechanics
血脂异常对内皮生物力学的影响
- 批准号:
10201709 - 财政年份:2007
- 资助金额:
$ 8.26万 - 项目类别:
Impact of dyslipidemia on endothelial biomechanics
血脂异常对内皮生物力学的影响
- 批准号:
7492115 - 财政年份:2007
- 资助金额:
$ 8.26万 - 项目类别:
Impact of dyslipidemia on endothelial biomechanics
血脂异常对内皮生物力学的影响
- 批准号:
9789917 - 财政年份:2007
- 资助金额:
$ 8.26万 - 项目类别:
Impact of dyslipidemia on endothelial biomechanics
血脂异常对内皮生物力学的影响
- 批准号:
7321162 - 财政年份:2007
- 资助金额:
$ 8.26万 - 项目类别:
Impact of dyslipidemia on endothelial biomechanics
血脂异常对内皮生物力学的影响
- 批准号:
7643248 - 财政年份:2007
- 资助金额:
$ 8.26万 - 项目类别:
相似海外基金
Deep learning to enable the genetic analysis of aorta
深度学习可实现主动脉的遗传分析
- 批准号:
10807379 - 财政年份:2023
- 资助金额:
$ 8.26万 - 项目类别:
Clinical benefits and mechanism of action of angiotensin-II receptor blocker on Cardiovascular remodeling in patients with repaired coarctation of aorta
血管紧张素II受体阻滞剂对主动脉缩窄修复患者心血管重塑的临床疗效及作用机制
- 批准号:
10734120 - 财政年份:2023
- 资助金额:
$ 8.26万 - 项目类别:
Development of new preventive method for postoperative paraplegia of thoracoabdominal aorta using exosomes
利用外泌体开发胸腹主动脉术后截瘫的新预防方法
- 批准号:
22K08940 - 财政年份:2022
- 资助金额:
$ 8.26万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
CAREER: Hemodynamic Mechanisms of Heart-Aorta-Brain Coupling with An Integrated Preventive Medicine Education Program for Socioeconomically Disadvantaged Groups
职业:心-主动脉-脑耦合的血流动力学机制以及针对社会经济弱势群体的综合预防医学教育计划
- 批准号:
2145890 - 财政年份:2022
- 资助金额:
$ 8.26万 - 项目类别:
Continuing Grant
Dissecting the role of hemodynamics in ascending aorta aneurysm development in bicuspid aortic valve disease
剖析血流动力学在二叶式主动脉瓣疾病升主动脉瘤发展中的作用
- 批准号:
500274 - 财政年份:2022
- 资助金额:
$ 8.26万 - 项目类别:
Studentship Programs
Smooth muscle cell diversity and thoracic aorta vulnerability
平滑肌细胞多样性和胸主动脉脆弱性
- 批准号:
453372 - 财政年份:2021
- 资助金额:
$ 8.26万 - 项目类别:
Operating Grants
Deep learning to enable the genetic analysis of aorta
深度学习可实现主动脉的遗传分析
- 批准号:
10613402 - 财政年份:2021
- 资助金额:
$ 8.26万 - 项目类别:
Novel flow manipulation technique for correcting blood flow in the aorta
用于纠正主动脉血流的新型血流操纵技术
- 批准号:
566018-2021 - 财政年份:2021
- 资助金额:
$ 8.26万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's














{{item.name}}会员




