Administrative Supplement for Structural Dynamics in Biology Resource Year 2
生物资源第二年结构动力学行政补充
基本信息
- 批准号:10833964
- 负责人:
- 金额:$ 18.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-04-01 至 2026-03-31
- 项目状态:未结题
- 来源:
- 关键词:3D PrintAdministrative SupplementAutomobile DrivingBehaviorBiologicalBiological ProcessBiologyCardiovascular DiseasesCeramicsCharacteristicsCommunitiesComplementCryopreservationCrystallographyData CollectionDecision MakingDevelopmentDevicesDrug TargetingElectron Microscopy FacilityEnsureExposure toG-Protein-Coupled ReceptorsGeometryGoalsIntegral Membrane ProteinLaboratoriesLightLiquid substanceMalignant NeoplasmsMapsMeasurementMeasuresMental disordersMetalloproteinsMetalsMethodsMicrofluidicsOxidation-ReductionPhysiologic pulsePlant ResinsPositioning AttributePredispositionProcessPropertyPublishingRadiationRadiation induced damageResolutionResourcesRoentgen RaysSamplingSignal TransductionSolventsSourceSpeedStructureSynchrotronsSystemTechnologyTimeTrainingTranslatingViscosityWorkbasebiomaterial compatibilitydensitydetectordrug developmentexperimental studyfabricationmetalloenzymenovelopen sourceparent grantprogramsprototyperadiation mitigationstructural biologytherapeutic development
项目摘要
Project Summary – Administrative Supplement Request – 1P41GM139687-02 – Sebastien
Boutet (PI).
This administrative supplement request is driven by overall goals and aims of the Structural
Dynamics in Biology BTRR at SLAC National Accelerator Laboratory. The BTRR is aimed at
enhancing and developing the unique capabilities of the SLAC Linac Coherent Light Source
(LCLS) for biomedical applications. The requested supplement will support a broad user base
and further the goals of the DBPs and the TR&Ds.
By overcoming the limitations of radiation damage at the synchrotron, LCLS has been particularly
impactful in the study of large macromolecular machines that form small crystals with high solvent
content, making them delicate, difficult to cryo-preserve and extremely radiation sensitive. For
example, a major breakthrough was the application of SFX to examine crystals of intrinsic
membrane proteins, such as GPCRs, grown in LCP. GPCRs are the largest group of targets for
drug development, used to treat a wide variety of illnesses (e.g. cancer, cardiovascular disease,
and mental illness). LCLS is also impactful in the study of metalloenzymes, which are critical to
nearly all biological processes and as such represent a rich target space for therapeutics
development. High-resolution structural studies of metalloproteins are particularly challenging at
the synchrotron because the metal centers, especially those that are redox active, are very
susceptible to x-ray induced photoreduction. Further, the ultrafast (~40 fs) x-ray pulses produced
by the LCLS open new possibilities in directly observing dynamic processes involved in
macromolecular function. Moreover, many of the P41-derived developments that enable the rapid
collection of data using multiple small crystals, are applicable both at LCLS and at the synchrotron
to mitigate radiation damage. By expanding the capabilities at LCLS and at the SSRL synchrotron,
the BTRR opens more macromolecular machines to structural characterization, including time-
resolved studies over a wide range of biomedically relevant time scales. Integrating with, and
enhancing the existing programs at SSRL and LCLS, the BTRR will provide support, expertise
and training to the broad biomedical community.
This administrative supplement will enhance and expand the BTRR capabilities that are provided
to general users and to the P41 driving biomedical projects. The acquisition of a high speed x-ray
chopper will fill a critical need of the BTRR for efficient use of SSRL BL12-1 with small crystals
delivered by liquid/crystal injectors and for time-resolved measurements. In addition to achieving
microsecond time resolution, by breaking up the continuous x-ray beam into short pulses, the
chopper ensures crystals delivered by injectors are not destroyed by x-ray damage before they
are fully translated into the x-ray beam position, enabling exposure to unattenuated
monochromatic or pink-beam at BL12-1. In addition, this supplement requests a biocompatible
resin and ceramic 3D printer with 2-micron resolution that will allow for rapid prototyping and
optimization of sample injectors that will provide reliability and ease that will broaden the user
community. Finally, the proposal also requests a system to measure the conductivity of samples
in an automated manner which will allow to further the goals of the BTRR in characterizing sample
conditions and mapping those onto the ideal sample delivery method to be used for a given
sample, providing users with structured decision-making on how to best perform their experiment.
This will complement ongoing efforts in physicochemical characterization by adding conductivity,
an important parameter for electrokinetic sample delivery, to lookup tables to be published.
项目摘要 - 行政补充请求 - 1P41GM139687-02 - Sebastien
boutet(pi)。
这种行政补充要求是由整体目标和结构的目标驱动的
SLAC国家加速器实验室生物学BTRR的动力学。 BTRR针对
增强和开发SLAC LINAC相干光源的独特功能
(LCL)用于生物医学应用。请求的补充剂将支持广泛的用户群
进一步进一步的DBP和TR&D的目标。
通过克服同步基因辐射损伤的局限性,LCLS尤其是
在大型大分子机器的研究中产生影响
内容,使其变得精致,难以冷冻的良好,并且对辐射非常敏感。为了
例如,主要突破是SFX的应用来检查固有的晶体
膜蛋白,例如GPCR,在LCP生长。 GPCR是最大的目标群
药物开发用于治疗多种疾病(例如癌症,心血管疾病,
和精神疾病)。 LCLS在对金属酶的研究中也具有影响,这对于
几乎所有的生物过程,因此代表了丰富的治疗目标空间
发展。金属蛋白的高分辨率结构研究在
同步加速器是因为金属中心,尤其是氧化还原活性的中心,非常非常
易受X射线诱导的光导量的影响。此外,产生的超快(〜40 fs)X射线脉冲
通过LCLS开放新的可能性,直接观察涉及的动态过程
大分子功能。此外,许多P41衍生的发展使得能够快速
使用多个小晶体收集数据,既适用于LCLS和同步加速器
减轻辐射损伤。通过扩展LCLS和SSRL同步器的功能,
BTRR为结构表征打开更多的大分子机器,包括时间
在广泛的生物医学相关时间尺度上解决的研究。与和
增强SSRL和LCLS的现有程序,BTRR将提供支持,专业知识
并培训了广泛的生物医学界。
这种行政补充剂将增强和扩展提供的BTRR功能
向普通用户和p41驱动生物医学项目。获得高速X射线
切菜器将满足BTRR的迫切需要,以有效利用SSRL BL12-1与小晶体
由液体/晶体喷油器和时间分辨测量。除了实现
微秒时间分辨率,通过将连续的X射线束分解为短脉冲,
切碎机确保注射器输送的晶体不会在X射线上破坏损坏
完全翻译成X射线梁位置,使暴露于未损坏
BL12-1时单色或粉红色梁。此外,该补充要求具有生物相容性
树脂和陶瓷3D打印机具有2微米分辨率,将允许快速原型制作和
优化样品喷油器,可以提供可靠性和易度性,以扩大用户
社区。最后,该提案还要求系统来测量样品的电导率
以自动化的方式,将允许进一步表征BTRR的目标
条件并将其映射到理想的样品输送方法上,以用于给定
样本,为用户提供有关如何最好地执行实验的结构性决策。
通过增加电导率,
电子样品传递的一个重要参数,以发布查找表。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sebastien Boutet其他文献
Sebastien Boutet的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sebastien Boutet', 18)}}的其他基金
相似海外基金
Cranial electrotherapy stimulation: Piloting a road to PTSD prevention in first responders
颅脑电疗刺激:在急救人员中试行预防 PTSD 的道路
- 批准号:
10853457 - 财政年份:2023
- 资助金额:
$ 18.9万 - 项目类别:
Synthetic manipulation of engineered perivascular niches
工程化血管周围生态位的综合操纵
- 批准号:
10831221 - 财政年份:2023
- 资助金额:
$ 18.9万 - 项目类别:
Perivascular tissue models to overcome MGMT-mediated temozolomide resistance in glioblastoma
克服胶质母细胞瘤中 MGMT 介导的替莫唑胺耐药性的血管周围组织模型
- 批准号:
10818804 - 财政年份:2023
- 资助金额:
$ 18.9万 - 项目类别:
Is the gut important in multiple joint osteoarthritis? A multimodal investigation in humans and pet dogs
肠道在多关节骨关节炎中重要吗?
- 批准号:
10859955 - 财政年份:2023
- 资助金额:
$ 18.9万 - 项目类别: