Enhancing AI-readiness of multi-omics data for cancer pharmacogenomics
增强癌症药物基因组学多组学数据的人工智能就绪性
基本信息
- 批准号:10840074
- 负责人:
- 金额:$ 31.8万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-03-01 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:Administrative SupplementArtificial IntelligenceAwarenessBioinformaticsBiologyBiomedical EngineeringBiomedical ResearchClinicalCollaborationsCommunitiesComplexComprehensionDataData SetDevelopmentDisciplineDrug ModelingsEnsureEventFosteringGene ExpressionGene MutationGenesGenomicsGoalsImageMalignant Childhood NeoplasmMalignant NeoplasmsMethodologyMethodsModelingMultiomic DataParentsPediatric NeoplasmPharmaceutical PreparationsPharmacogenomicsPrediction of Response to TherapyReadinessResearch PersonnelResourcesScientistStructureUnited States National Institutes of Healthartificial intelligence methodcancer cellcommunity engagementdata formatdeep learningdeep learning modeldrug sensitivitygenomic dataimage guidedimprovedmultidimensional datamultiple omicsnovelnovel therapeuticsparent projectpredictive modelingresponsesymposiumtoolweb server
项目摘要
Summary/Abstract
The scarcity of comprehensive pharmacogenomics resources poses a significant obstacle to the development
of new therapies for pediatric cancers. Our parent R00 project seeks to overcome this challenge by creating and
validating a novel deep learning model for predicting drug sensitivity of pediatric tumors using integrative multi-
omics profiles. However, the utilization of cutting-edge deep learning models to analyze multi-omics is often
challenging since the data are high-dimensional and unstructured. Under the parent project, we have evaluated
several embedding methods to transform multi-omics data into a structured format that enables artificial
intelligence (AI) applications. In response to NOT-OD-23-082 “Administrative Supplements to Support
Collaborations to Improve the AI/ML-Readiness of NIH-Supported Data,” we propose to supplement the parent
project by further enhancing the AI-readiness of multi-omics data for studying cancer pharmacogenomics. Our
hypothesis is that biology-guided image embedding of unstructured multi-omics data enhances the information
captured by deep learning, enabling accurate modeling and prediction of treatment responses. We aim to
achieve three relevant, but independent, goals: 1) methodology: to develop better data conversion methods for
AI-readiness of cancer multi-omics, 2) accessibility: to make AI-ready tools and data more accessible to the
biomedical research community, and 3) engagement: to promote collaboration on AI-readiness among the
communities of bioinformatics, biomedical engineering, and biomedicine. Specifically, Aim 1 will evaluate a
comprehensive array of biologically meaningful ways to transform unstructured multi-omics data, including gene
mutation and gene expression profiles, to an image-like data format that can be analyzed by convolutional
models. Our approach will embed functional similarities of genes to ensure interpretability. In Aim 2, we will
develop an interactive web server that provides easy access to data conversion tools and AI-ready cancer data.
Finally, in Aim 3, we will organize a community engagement event at a flagship conference of bioinformatics to
enhance awareness of current gaps in AI-readiness and foster collaboration and diversity among clinical, basic,
and computational scientists and trainees. The proposed supplement has brought together a collaborative team
of experts from diverse disciplines, covering cancer bioinformatics, genomics and pharmacogenomics, AI
methodology, and community engagement events. Successful completion of this supplement will have a
significant impact on advancing the AI-readiness of large cancer data, aligning with the objectives of the parent
R00 project.
摘要/文摘
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Transformer for Gene Expression Modeling (T-GEM): An Interpretable Deep Learning Model for Gene Expression-Based Phenotype Predictions.
- DOI:10.3390/cancers14194763
- 发表时间:2022-09-29
- 期刊:
- 影响因子:5.2
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yu-Chiao Chiu其他文献
Yu-Chiao Chiu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yu-Chiao Chiu', 18)}}的其他基金
In silico screening for immune surveillance adaptation in cancer using Common Fund data resources
使用共同基金数据资源对癌症免疫监测适应进行计算机筛选
- 批准号:
10773268 - 财政年份:2023
- 资助金额:
$ 31.8万 - 项目类别:
Deep learning of drug sensitivity and genetic dependency of pediatric cancer cells
儿科癌细胞药物敏感性和遗传依赖性的深度学习
- 批准号:
10112859 - 财政年份:2020
- 资助金额:
$ 31.8万 - 项目类别:
Deep learning of drug sensitivity and genetic dependency of pediatric cancer cells
儿科癌细胞药物敏感性和遗传依赖性的深度学习
- 批准号:
10620367 - 财政年份:2020
- 资助金额:
$ 31.8万 - 项目类别:
Deep learning of drug sensitivity and genetic dependency of pediatric cancer cells
儿科癌细胞药物敏感性和遗传依赖性的深度学习
- 批准号:
10657820 - 财政年份:2020
- 资助金额:
$ 31.8万 - 项目类别:
相似海外基金
TRUST2 - Improving TRUST in artificial intelligence and machine learning for critical building management
TRUST2 - 提高关键建筑管理的人工智能和机器学习的信任度
- 批准号:
10093095 - 财政年份:2024
- 资助金额:
$ 31.8万 - 项目类别:
Collaborative R&D
QUANTUM-TOX - Revolutionizing Computational Toxicology with Electronic Structure Descriptors and Artificial Intelligence
QUANTUM-TOX - 利用电子结构描述符和人工智能彻底改变计算毒理学
- 批准号:
10106704 - 财政年份:2024
- 资助金额:
$ 31.8万 - 项目类别:
EU-Funded
Artificial intelligence in education: Democratising policy
教育中的人工智能:政策民主化
- 批准号:
DP240100602 - 财政年份:2024
- 资助金额:
$ 31.8万 - 项目类别:
Discovery Projects
Application of artificial intelligence to predict biologic systemic therapy clinical response, effectiveness and adverse events in psoriasis
应用人工智能预测生物系统治疗银屑病的临床反应、有效性和不良事件
- 批准号:
MR/Y009657/1 - 财政年份:2024
- 资助金额:
$ 31.8万 - 项目类别:
Fellowship
REU Site: CyberAI: Cybersecurity Solutions Leveraging Artificial Intelligence for Smart Systems
REU 网站:CyberAI:利用人工智能实现智能系统的网络安全解决方案
- 批准号:
2349104 - 财政年份:2024
- 资助金额:
$ 31.8万 - 项目类别:
Standard Grant
EAGER: Artificial Intelligence to Understand Engineering Cultural Norms
EAGER:人工智能理解工程文化规范
- 批准号:
2342384 - 财政年份:2024
- 资助金额:
$ 31.8万 - 项目类别:
Standard Grant
Reversible Computing and Reservoir Computing with Magnetic Skyrmions for Energy-Efficient Boolean Logic and Artificial Intelligence Hardware
用于节能布尔逻辑和人工智能硬件的磁斯格明子可逆计算和储层计算
- 批准号:
2343607 - 财政年份:2024
- 资助金额:
$ 31.8万 - 项目类别:
Standard Grant
I-Corps: Translation Potential of a Secure Data Platform Empowering Artificial Intelligence Assisted Digital Pathology
I-Corps:安全数据平台的翻译潜力,赋能人工智能辅助数字病理学
- 批准号:
2409130 - 财政年份:2024
- 资助金额:
$ 31.8万 - 项目类别:
Standard Grant
Planning: Artificial Intelligence Assisted High-Performance Parallel Computing for Power System Optimization
规划:人工智能辅助高性能并行计算电力系统优化
- 批准号:
2414141 - 财政年份:2024
- 资助金额:
$ 31.8万 - 项目类别:
Standard Grant
Reassessing the Appropriateness of currently-available Data-set Protection Levers in the era of Artificial Intelligence
重新评估人工智能时代现有数据集保护手段的适用性
- 批准号:
23K22068 - 财政年份:2024
- 资助金额:
$ 31.8万 - 项目类别:
Grant-in-Aid for Scientific Research (B)














{{item.name}}会员




