In silico screening for immune surveillance adaptation in cancer using Common Fund data resources
使用共同基金数据资源对癌症免疫监测适应进行计算机筛选
基本信息
- 批准号:10773268
- 负责人:
- 金额:$ 31.8万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-20 至 2024-09-19
- 项目状态:已结题
- 来源:
- 关键词:AdultAffectAntineoplastic AgentsArtificial IntelligenceAwardBioinformaticsBiologicalCD8-Positive T-LymphocytesCancer cell lineCell DeathCell LineCell secretionCellsChildComputer AnalysisComputer ModelsDataData SetDetectionDevelopmentDrynessFollow-Up StudiesFundingGeneticGenomicsGoalsImmuneImmune EvasionImmune TargetingImmune responseImmune systemImmunologic SurveillanceImmunologicsImmunologyImmunology procedureImmunomodulatorsImmunotherapyIn VitroIntelligenceKnowledgeLaboratoriesLibrariesMacrophageMalignant NeoplasmsMediatingModelingMolecularMolecular ProfilingNetwork-basedPatternPediatric NeoplasmPerformancePharmaceutical PreparationsPharmacogenomicsPilot ProjectsProductionProductivityPrognosisPublishingResearchResourcesSignal InductionSignal TransductionTestingThe Cancer Genome AtlasTherapeuticTrainingTumor-infiltrating immune cellsUnited States National Institutes of HealthValidationWorkcancer carecancer cellcancer genomicscancer immunotherapycancer typecarcinogenesiscell typechemokinecomputer frameworkcomputerized toolscytokinedata integrationdata resourcedeep learningdeep learning modeldesigneffective therapyexperiencefollow-upgenetic signatureimmune functionimmune modulating agentsimmunoregulationimprovedin silicoin vitro Assayin vitro Modelinnovationinsightinterestlarge datasetslarge-scale databasemultimodal datamultimodalityneoplastic cellnovelpharmacologicpre-clinicalprogramsresponsescreeningtargeted agenttumor immunologytumor microenvironment
项目摘要
Summary/Abstract
Advances in immunotherapy have lately revolutionized cancer care. A key strategy of cancer immunotherapy is
to target “non-cell-autonomous” mechanisms of immune surveillance adaptation, achieved via regulating the
secretions of immune modulators from cancer cells. Yet, an in silico systematic screen for these targets and
immunomodulating agents (potentially therapeutic drugs) remains untested due to a lack of computational tools
to analyze relevant large-scale database resources. The study is proposed in response to RFA-RM-23-003 to
meaningfully integrate multiple NIH Common Fund and other NIH-funded datasets to inform the molecular basis
of immune surveillance adaptation and screen for potential immunomodulating agents. Our central hypothesis
is that cancer genomic features captured by deep learning predict cancer cells’ non-cell autonomous signals
induced by a compound treatment to modulate immune cells in the tumor microenvironment. We propose to test
the hypothesis by developing an innovative and feasible computational framework that is built upon our published
deep learning models. Specifically, in Aim 1.1 we propose to identify prognosis-related immune cell types and
associated immunologic gene signatures among adult (The Cancer Genome Atlas [TCGA]) and pediatric tumors
(Gabriella Miller Kids First [Kids First] and Therapeutically Applicable Research To Generate Effective
Treatments [TARGET]). We will then build a deep learning model to predict the perturbation of the identified
immunologic gene signatures induced by a compound in a cancer cell line using the Library of Integrated
Network-based Cellular Signatures (LINCS) data. In Aim 1.2, we will experimentally validate key findings using
our in-house in vitro models. We have formed a cross-disciplinary team with strong complementary expertise to
efficiently achieve the proposed goals: dry lab of Dr. Yu-Chiao Chiu (MPI) for cancer bioinformatics, multi-modal
data integration, and artificial intelligence; and wet lab of Dr. Yi-Nan Gong (MPI) for cancer immunology,
immunotherapy, and tumor cell death mechanisms. Successful completion of the pilot study will produce high-
impact preliminary results: i) the first deep learning framework that systematically incorporates multi-modal
genomic and pharmacogenomic data to screen for immunomodulating agents, ii) a deeper understanding of the
molecular basis of immune surveillance adaptation than was previously possible, and more importantly iii) a set
of promising targets preliminarily validated in vitro. These preliminary data will lead to a follow-up study to explore
functional and preclinical aspects of our results. We also expect the proposed study to provide a computational
framework that enhances the utilization and integration of NIH Common Fund data and other publicly available
large datasets.
摘要/文摘
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yu-Chiao Chiu其他文献
Yu-Chiao Chiu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yu-Chiao Chiu', 18)}}的其他基金
Deep learning of drug sensitivity and genetic dependency of pediatric cancer cells
儿科癌细胞药物敏感性和遗传依赖性的深度学习
- 批准号:
10112859 - 财政年份:2020
- 资助金额:
$ 31.8万 - 项目类别:
Enhancing AI-readiness of multi-omics data for cancer pharmacogenomics
增强癌症药物基因组学多组学数据的人工智能就绪性
- 批准号:
10840074 - 财政年份:2020
- 资助金额:
$ 31.8万 - 项目类别:
Deep learning of drug sensitivity and genetic dependency of pediatric cancer cells
儿科癌细胞药物敏感性和遗传依赖性的深度学习
- 批准号:
10620367 - 财政年份:2020
- 资助金额:
$ 31.8万 - 项目类别:
Deep learning of drug sensitivity and genetic dependency of pediatric cancer cells
儿科癌细胞药物敏感性和遗传依赖性的深度学习
- 批准号:
10657820 - 财政年份:2020
- 资助金额:
$ 31.8万 - 项目类别:
相似海外基金
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 31.8万 - 项目类别:
Standard Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 31.8万 - 项目类别:
Standard Grant
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 31.8万 - 项目类别:
Training Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 31.8万 - 项目类别:
Fellowship
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 31.8万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 31.8万 - 项目类别:
Research Grant
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 31.8万 - 项目类别:
Studentship
ERI: Developing a Trust-supporting Design Framework with Affect for Human-AI Collaboration
ERI:开发一个支持信任的设计框架,影响人类与人工智能的协作
- 批准号:
2301846 - 财政年份:2023
- 资助金额:
$ 31.8万 - 项目类别:
Standard Grant
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 31.8万 - 项目类别:
Operating Grants
How motor impairments due to neurodegenerative diseases affect masticatory movements
神经退行性疾病引起的运动障碍如何影响咀嚼运动
- 批准号:
23K16076 - 财政年份:2023
- 资助金额:
$ 31.8万 - 项目类别:
Grant-in-Aid for Early-Career Scientists