Leveraging routinely collected health data to improve understanding of language development in children identified as late talkers
利用定期收集的健康数据来提高对说话晚的儿童的语言发展的理解
基本信息
- 批准号:10838732
- 负责人:
- 金额:$ 26.1万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-07 至 2027-08-31
- 项目状态:未结题
- 来源:
- 关键词:6 year oldAddressAgeAge MonthsAutomated Clinical Decision SupportBehaviorBiological MarkersBirthBlue CrossBlue ShieldBrainCaregiversCaringChildChild BehaviorClinicalClinical TrialsCodeCollaborationsComputer Vision SystemsComputing MethodologiesDataData AnalysesData ScienceData SetDevelopmentDevicesDiagnosisDiscriminationEarly DiagnosisElectroencephalographyElectronic Health RecordElementsEngineeringEquityEthnic OriginFactor AnalysisFamilyFutureGoalsHealth Services AccessibilityHealth systemHomeInfantIntellectual functioning disabilityInterventionLanguageLanguage DevelopmentMachine LearningMeasuresMedicaidMedicalMethodsMonitorNatural Language ProcessingNatureNeurosciencesNorth CarolinaOutcomeOutcome MeasureParent-Child RelationsParticipantPathway AnalysisPatternPatterns of CarePediatricsPhasePhenotypePopulationPopulation HeterogeneityPredictive ValuePrevalenceProviderPsychiatryPsychologyQualifyingQuality of lifeQuestionnairesRaceResearchScreening procedureStratificationTestingToddlerUniversitiesVideo Recordingautism spectrum disorderautisticautistic childrenbehavioral outcomebrain basedclinical careclinical decision supportcomputer sciencedata managementdesigndigitaldigital healthelectronic health datagastrointestinalhealth dataimplementation scienceimprovedindexinginnovationinsightliteracymachine learning methodmembermultimodalityneglectneuralneural networknovelnovel strategiesoutreachprediction algorithmpredictive modelingprimary care clinicprimary care providerrecruitremote administrationscreeningsexsocial attentionsuccesssupport toolstoolusability
项目摘要
ABSTRACT – Overall
The overall goal of the Duke Autism Center of Excellence is to use an innovative, translational digital health and
computational approach to address the critical need for more effective autism screening tools, objective outcome
measures, and brain-based biomarkers that can be used in clinical trials with young autistic children. An
Administrative Core, Dissemination and Outreach Core, and Data Management and Analysis Core will support
three Projects. Project 1 will recruit a large population of 16- to 30-month-old toddlers through primary care clinics
to evaluate the accuracy of a remotely administered novel digital phenotyping application (app) for detecting
early signs of autism. The app automatically quantifies observations of children’s behavior using computer vision
analysis and is deployed on widely available devices. The usability of the app for longitudinal outcome monitoring
will be assessed at 16-30, 36, and 48 months of age. The feasibility of using computer vision analysis to measure
patterns of caregiver-child interactions from videos recorded at home will be explored. Project 2 will develop a
complementary autism screening approach by using North Carolina Medicaid and Blue Cross Blue Shield claims
data (N ~ 230,000, autism cases ~6,000) to create a generalizable autism prediction model based on routine
health data collected from birth to 18 months. Then, using Duke University Health System electronic health
records (EHR; N ~ 64,000, autism cases ~ 800), this Project will use natural language processing to assess the
added predictive value of EHR elements not captured in claims data (e.g., clinician notes). Both data sets will be
leveraged to gain insight into the nature and prevalence of medical conditions in infants and toddlers who are
later diagnosed with autism. Projects 1 and 2 will collaboratively engage primary care providers and other
stakeholders to design an automated clinical decision support tool for autism screening that, in the future, could
be integrated into the primary care provider’s clinical workflow. Project 3 will use an innovative machine learning
computational method to develop a multimodal biomarker that combines features of electroencephalographic
(EEG) activity and synchronized measures of children’s behavior (e.g., social attention) automatically coded via
computer vision analysis, with a focus on neural connectivity measured via traditional methods (coherence,
phase-lag index) and novel neural network analysis methods (discriminative cross-spectral factor analysis)
developed by our team. This multimodal approach will be evaluated in 3–6-year-old autistic children without
intellectual disability (ID), age- and sex-matched neurotypical children, and autistic children with ID (IQ <= 70).
Across Projects, our Center’s team will share cutting-edge computational methods to develop new tools that can
address long-standing barriers to optimal care and enhanced quality of life for autistic children and their families.
摘要-总体
杜克自闭症卓越中心的总体目标是使用创新的,转化的数字健康和
计算方法,以解决更有效的自闭症筛查工具,客观结果的关键需求
措施,以及可用于自闭症儿童临床试验的脑生物标志物。一个
行政核心、传播和外联核心以及数据管理和分析核心将支持
三个项目。项目1将通过初级保健诊所招募大量16至30个月大的幼儿
评估远程管理的新型数字表型应用程序(app)检测的准确性
自闭症的早期症状该应用程序使用计算机视觉自动量化对儿童行为的观察
分析并部署在广泛可用的设备上。应用程序用于纵向结局监测的可用性
将在16-30、36和48个月大时进行评估。利用计算机视觉分析进行测量的可行性
将探讨在家中录制的视频中的儿童与儿童互动模式。项目2将开发一个
通过使用北卡罗来纳州医疗补助和蓝十字蓝盾索赔的补充自闭症筛查方法
数据(N ~ 230,000,自闭症病例~ 6,000),以创建基于常规的可推广自闭症预测模型
从出生到18个月收集的健康数据。然后,使用杜克大学健康系统电子健康
记录(EHR; N ~ 64,000,自闭症病例~ 800),该项目将使用自然语言处理来评估
增加了索赔数据中未捕获的EHR元素的预测值(例如,临床医师记录)。这两个数据集将
用于深入了解婴儿和幼儿的医疗状况的性质和患病率,
后来被诊断为自闭症项目1和2将与初级保健提供者和其他
利益相关者设计一个自闭症筛查的自动化临床决策支持工具,在未来,
整合到初级保健提供者的临床工作流程中。Project 3将使用创新的机器学习
开发结合脑电图特征的多模态生物标志物的计算方法
(EEG)活动和儿童行为的同步测量(例如,社会关注)自动编码,
计算机视觉分析,重点是通过传统方法测量的神经连接性(相干性,
相位滞后指数)和新的神经网络分析方法(判别交叉谱因子分析)
由我们的团队开发。这种多模式方法将在3-6岁的自闭症儿童中进行评估,
智力残疾(ID)、年龄和性别匹配的神经正常儿童和患有ID(IQ <= 70)的自闭症儿童。
在各个项目中,我们中心的团队将分享尖端的计算方法,以开发新的工具,
解决自闭症儿童及其家庭获得最佳护理和提高生活质量的长期障碍。
项目成果
期刊论文数量(41)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Adaptive Behavior in Young Autistic Children: Associations with Irritability and ADHD Symptoms.
年轻自闭症儿童的适应性行为:与烦躁和多动症症状的关联。
- DOI:10.1007/s10803-022-05753-2
- 发表时间:2022
- 期刊:
- 影响因子:3.9
- 作者:Carpenter,KimberlyLH;Davis,NaomiO;Spanos,Marina;Sabatos-DeVito,Maura;Aiello,Rachel;Baranek,GraceT;Compton,ScottN;Egger,HelenL;Franz,Lauren;Kim,Soo-Jeong;King,BryanH;Kolevzon,Alexander;McDougle,ChristopherJ;Sanders,Kevin;
- 通讯作者:
A tablet-based game for the assessment of visual motor skills in autistic children.
- DOI:10.1038/s41746-023-00762-6
- 发表时间:2023-02-03
- 期刊:
- 影响因子:15.2
- 作者:
- 通讯作者:
A Six-Minute Measure of Vocalizations in Toddlers with Autism Spectrum Disorder.
- DOI:10.1002/aur.2293
- 发表时间:2020-08
- 期刊:
- 影响因子:0
- 作者:Tenenbaum EJ;Carpenter KLH;Sabatos-DeVito M;Hashemi J;Vermeer S;Sapiro G;Dawson G
- 通讯作者:Dawson G
Estimating Uncertainty Intervals from Collaborating Networks.
- DOI:pii: 257
- 发表时间:2021-01
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Computer Vision Analysis for Quantification of Autism Risk Behaviors.
- DOI:10.1109/taffc.2018.2868196
- 发表时间:2021-01
- 期刊:
- 影响因子:11.2
- 作者:Hashemi J;Dawson G;Carpenter KLH;Campbell K;Qiu Q;Espinosa S;Marsan S;Baker JP;Egger HL;Sapiro G
- 通讯作者:Sapiro G
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Geraldine Dawson其他文献
Geraldine Dawson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Geraldine Dawson', 18)}}的其他基金
Novel Approaches to Infant Screening for ASD in Pediatric Primary Care
儿科初级保健中婴儿自闭症谱系障碍筛查的新方法
- 批准号:
10443752 - 财政年份:2019
- 资助金额:
$ 26.1万 - 项目类别:
Scalable Computational Platform For Active Closed-Loop Behavioral Coding in Autism Spectrum Disorder
用于自闭症谱系障碍主动闭环行为编码的可扩展计算平台
- 批准号:
10440249 - 财政年份:2019
- 资助金额:
$ 26.1万 - 项目类别:
Novel Approaches to Infant Screening for ASD in Pediatric Primary Care
儿科初级保健中婴儿自闭症谱系障碍筛查的新方法
- 批准号:
10227331 - 财政年份:2019
- 资助金额:
$ 26.1万 - 项目类别:
Novel Approaches to Infant Screening for ASD in Pediatric Primary Care
儿科初级保健中婴儿自闭症谱系障碍筛查的新方法
- 批准号:
10018110 - 财政年份:2019
- 资助金额:
$ 26.1万 - 项目类别:
Novel Approaches to Infant Screening for ASD in Pediatric Primary Care
儿科初级保健中婴儿自闭症谱系障碍筛查的新方法
- 批准号:
10670242 - 财政年份:2019
- 资助金额:
$ 26.1万 - 项目类别:
Scalable Computational Platform For Active Closed-Loop Behavioral Coding in Autism Spectrum Disorder
用于自闭症谱系障碍主动闭环行为编码的可扩展计算平台
- 批准号:
9791518 - 财政年份:2019
- 资助金额:
$ 26.1万 - 项目类别:
Neural signatures, developmental precursors, and outcomes in young children with ASD and ADHD
患有 ASD 和 ADHD 的幼儿的神经特征、发育前兆和结果
- 批准号:
10227712 - 财政年份:2017
- 资助金额:
$ 26.1万 - 项目类别:
Duke Autism Center of Excellence: A translational digital health and computational approach to early identification, outcome monitoring, and biomarker discovery in autism
杜克大学自闭症卓越中心:用于自闭症早期识别、结果监测和生物标志物发现的转化数字健康和计算方法
- 批准号:
10523403 - 财政年份:2017
- 资助金额:
$ 26.1万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 26.1万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 26.1万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 26.1万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 26.1万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 26.1万 - 项目类别:
Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 26.1万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 26.1万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 26.1万 - 项目类别:
EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 26.1万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 26.1万 - 项目类别:
Research Grant