Next-Generation Parenteral Drug Delivery Systems for Controlling Pharmacokinetics
用于控制药代动力学的下一代肠外给药系统
基本信息
- 批准号:10890222
- 负责人:
- 金额:$ 7.35万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-15 至 2026-07-31
- 项目状态:未结题
- 来源:
- 关键词:3D PrintAcuteAreaBehaviorBiocompatible MaterialsBiologicalBiological ProductsChemistryChronicChronic DiseaseClinicalComplexDiseaseDoseDrug Delivery SystemsDrug KineticsDrynessEncapsulatedExclusionExcretory functionExhibitsFDA approvedFormulationFrequenciesGeometryGoalsHalf-LifeHealth Care CostsHydrophobicityInjectableKineticsMedicineMethodsMorbidity - disease ratePatient-Focused OutcomesPatientsPersonsPharmaceutical PreparationsPharmacologic SubstancePharmacotherapyPharmacy (field)PolymersRegimenRouteRunningSafetySiteStructureStructure-Activity RelationshipSurfaceSystemTherapeuticWaterabsorptioncompliance behaviorcontrolled releasedrug release kineticsfabricationimprovedinterestmanufacturemodel designmortalitymulti-photonnanofabricationnext generationparticlepreventrational designside effecttherapy durationwelfare
项目摘要
PROJECT SUMMARY/ABSTRACT
Every day, an estimated 3.9 billion people take medication to treat acute or chronic conditions. However, despite
the enormous utility of current pharmaceuticals, they are limited by several factors that prevent their more
effective and expanded use. Ideally, drugs would reach the desired concentration at the site of action for the
duration that the therapy is required. In practice, this is difficult because the body is constantly metabolizing and
excreting drugs, which necessitates re-administration. Depending on a drug’s therapeutic window and biological
half-life, frequent administration may be required, which lowers patients’ adherence to their dosing regimens.
This issue is pervasive with non-adherence rates as high as 50% for chronic diseases, leading to increased
morbidity and mortality and as much as $290 billion in added healthcare costs each year in the U.S. alone. The
field of pharmaceutics has developed formulation methods that reduce administration frequency, including
injectable controlled-release systems composed of drug embedded in biodegradable materials. Unfortunately,
current clinically-approved systems are limited in both the types of molecules that they can deliver and the drug
release kinetics they can achieve. This proposal seeks to develop parenteral drug delivery strategies that
enhance safety and efficacy, improve patient adherence, and enable the sustained release of biological drugs.
We hypothesize that emerging nanofabrication methods (e.g. multi-photon 3D printing) can be used to control
the structure—and thus behavior—of surface-eroding particles containing drug. Because the degradation of
these hydrophobic materials is confined to the surface, drug distributed homogeneously throughout their volume
will be released at a rate proportional to their erosion rate and exposed surface area. Using these methods, we
can model and rationally design microparticle structures that release drug at predictable, geometrically-defined
rates. Although this concept could be applied to achieve a wide array of release kinetics, we are most interested
in attaining zero-order release kinetics, which are desirable for most diseases, and sequential release, which
may be useful for dynamic conditions. Further, because surface eroding materials exclude water, their interior
microenvironment will remain dry and neutral, thus promoting the stability of encapsulated biologics at 37°C. The
features of surface-eroding microparticles run in stark contrast with existing FDA-approved microparticles
composed of bulk-degrading polymers that absorb water and produce acidic degradation products, which makes
it impossible to predict release kinetics a priori, contributes to the degradation of encapsulated biologics, and
prevents sequential release. The strategies we propose are only now possible due to the convergence of
advances in manufacturing and chemistry that allow us to exploit structure-function relationships at a scale small
enough to retain microparticle injectability. If successful, this approach has the ability to fundamentally change
how drugs are administered and improve patient outcomes across all of medicine.
项目总结/摘要
据估计,每天有39亿人服用药物治疗急性或慢性疾病。但尽管
尽管目前药物的巨大效用,但它们受到几个因素的限制,这些因素阻止了它们的更多
有效和扩大使用。理想情况下,药物将在作用部位达到所需的浓度,
需要治疗的持续时间。在实践中,这是困难的,因为身体不断代谢,
排泄药物,这需要重新给药。根据药物的治疗窗口和生物学特性,
半衰期,可能需要频繁给药,这降低了患者对其给药方案的依从性。
这一问题普遍存在,慢性病的不依从率高达50%,导致增加
发病率和死亡率,仅在美国每年就增加高达2900亿美元的医疗保健费用。的
制药领域已经开发出降低给药频率的制剂方法,包括
由包埋在可生物降解材料中药物组成的可注射控释系统。不幸的是,
目前临床批准的系统在它们可以递送的分子类型和药物
释放动力学可以实现。该提案寻求开发肠胃外药物递送策略,
增强安全性和有效性,提高患者依从性,并使生物药物能够持续释放。
我们假设新兴的纳米制造方法(例如多光子3D打印)可以用于控制
含有药物的表面侵蚀颗粒的结构和行为。因为,
这些疏水性材料被限制在表面,药物均匀地分布在它们的整个体积中
将以与其侵蚀速率和暴露表面积成比例的速率释放。使用这些方法,我们
可以模拟和合理设计微粒结构,
rates.虽然这一概念可以应用于实现广泛的释放动力学,我们最感兴趣的是,
在获得零级释放动力学(这对于大多数疾病是期望的)和顺序释放(这
可以用于动态条件。此外,由于表面侵蚀材料排斥水,
微环境将保持干燥和中性,从而促进包封的生物制剂在37°C下的稳定性。的
表面侵蚀微粒的特征与现有的FDA批准的微粒形成鲜明对比
由吸收水并产生酸性降解产物的本体降解聚合物组成,
不可能事先预测释放动力学,有助于包封生物制剂的降解,
防止连续释放。我们提出的战略现在才有可能,因为
制造和化学的进步使我们能够在小规模上利用结构-功能关系,
足以保持微粒可注射性。如果成功,这种方法有能力从根本上改变
如何管理药物并改善所有医学领域的患者结果。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Strategies for overcoming protein and peptide instability in biodegradable drug delivery systems.
克服可生物降解药物输送系统中蛋白质和肽不稳定性的策略。
- DOI:10.1016/j.addr.2023.114904
- 发表时间:2023
- 期刊:
- 影响因子:16.1
- 作者:Shi,Miusi;McHugh,KevinJ
- 通讯作者:McHugh,KevinJ
Overcoming barriers to patient adherence: the case for developing innovative drug delivery systems.
- DOI:10.1038/s41573-023-00670-0
- 发表时间:2023-05
- 期刊:
- 影响因子:120.1
- 作者:Baryakova, Tsvetelina H.;Pogostin, Brett H.;Langer, Robert;McHugh, Kevin J.
- 通讯作者:McHugh, Kevin J.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kevin James McHugh其他文献
Kevin James McHugh的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kevin James McHugh', 18)}}的其他基金
Research Supplement to Promote Diversity: Carlos Torres (R03EB031495 Parent Award)
促进多样性的研究补充:Carlos Torres(R03EB031495 家长奖)
- 批准号:
10592146 - 财政年份:2022
- 资助金额:
$ 7.35万 - 项目类别:
Research Supplement to Promote Diversity: Belvi Bwela (R03EB031495 Parent Award)
促进多样性的研究补充:Belvi Bwela(R03EB031495 家长奖)
- 批准号:
10592142 - 财政年份:2022
- 资助金额:
$ 7.35万 - 项目类别:
Electrosprayed Core-Shell Microparticles as a Pulsatile Vaccine Delivery Platform
电喷雾核壳微粒作为脉冲疫苗输送平台
- 批准号:
10195135 - 财政年份:2021
- 资助金额:
$ 7.35万 - 项目类别:
Solvent Evaporator Equipment Supplement to R35GM143101
R35GM143101 溶剂蒸发器设备补充
- 批准号:
10799251 - 财政年份:2021
- 资助金额:
$ 7.35万 - 项目类别:
Next-Generation Parenteral Drug Delivery Systems for Controlling Pharmacokinetics
用于控制药代动力学的下一代肠外给药系统
- 批准号:
10277139 - 财政年份:2021
- 资助金额:
$ 7.35万 - 项目类别:
Electrosprayed Core-Shell Microparticles as a Pulsatile Vaccine Delivery Platform
电喷雾核壳微粒作为脉冲疫苗输送平台
- 批准号:
10372138 - 财政年份:2021
- 资助金额:
$ 7.35万 - 项目类别:
Research Supplement to Promote Diversity: Mei-Li Laracuente (1R35GM143101 Parent Award)
促进多样性的研究补充:Mei-Li Laracuente(1R35GM143101家长奖)
- 批准号:
10631614 - 财政年份:2021
- 资助金额:
$ 7.35万 - 项目类别:
Next-Generation Parenteral Drug Delivery Systems for Controlling Pharmacokinetics
用于控制药代动力学的下一代肠外给药系统
- 批准号:
10667652 - 财政年份:2021
- 资助金额:
$ 7.35万 - 项目类别:
Next-Generation Parenteral Drug Delivery Systems for Controlling Pharmacokinetics
用于控制药代动力学的下一代肠外给药系统
- 批准号:
10488240 - 财政年份:2021
- 资助金额:
$ 7.35万 - 项目类别:
Biomaterial Strategies for Modulating the Immune Response
调节免疫反应的生物材料策略
- 批准号:
10232052 - 财政年份:2020
- 资助金额:
$ 7.35万 - 项目类别:
相似海外基金
Transcriptional assessment of haematopoietic differentiation to risk-stratify acute lymphoblastic leukaemia
造血分化的转录评估对急性淋巴细胞白血病的风险分层
- 批准号:
MR/Y009568/1 - 财政年份:2024
- 资助金额:
$ 7.35万 - 项目类别:
Fellowship
Combining two unique AI platforms for the discovery of novel genetic therapeutic targets & preclinical validation of synthetic biomolecules to treat Acute myeloid leukaemia (AML).
结合两个独特的人工智能平台来发现新的基因治疗靶点
- 批准号:
10090332 - 财政年份:2024
- 资助金额:
$ 7.35万 - 项目类别:
Collaborative R&D
Acute senescence: a novel host defence counteracting typhoidal Salmonella
急性衰老:对抗伤寒沙门氏菌的新型宿主防御
- 批准号:
MR/X02329X/1 - 财政年份:2024
- 资助金额:
$ 7.35万 - 项目类别:
Fellowship
Cellular Neuroinflammation in Acute Brain Injury
急性脑损伤中的细胞神经炎症
- 批准号:
MR/X021882/1 - 财政年份:2024
- 资助金额:
$ 7.35万 - 项目类别:
Research Grant
STTR Phase I: Non-invasive focused ultrasound treatment to modulate the immune system for acute and chronic kidney rejection
STTR 第一期:非侵入性聚焦超声治疗调节免疫系统以治疗急性和慢性肾排斥
- 批准号:
2312694 - 财政年份:2024
- 资助金额:
$ 7.35万 - 项目类别:
Standard Grant
Combining Mechanistic Modelling with Machine Learning for Diagnosis of Acute Respiratory Distress Syndrome
机械建模与机器学习相结合诊断急性呼吸窘迫综合征
- 批准号:
EP/Y003527/1 - 财政年份:2024
- 资助金额:
$ 7.35万 - 项目类别:
Research Grant
FITEAML: Functional Interrogation of Transposable Elements in Acute Myeloid Leukaemia
FITEAML:急性髓系白血病转座元件的功能研究
- 批准号:
EP/Y030338/1 - 财政年份:2024
- 资助金额:
$ 7.35万 - 项目类别:
Research Grant
KAT2A PROTACs targetting the differentiation of blasts and leukemic stem cells for the treatment of Acute Myeloid Leukaemia
KAT2A PROTAC 靶向原始细胞和白血病干细胞的分化,用于治疗急性髓系白血病
- 批准号:
MR/X029557/1 - 财政年份:2024
- 资助金额:
$ 7.35万 - 项目类别:
Research Grant
ロボット支援肝切除術は真に低侵襲なのか?acute phaseに着目して
机器人辅助肝切除术真的是微创吗?
- 批准号:
24K19395 - 财政年份:2024
- 资助金额:
$ 7.35万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Acute human gingivitis systems biology
人类急性牙龈炎系统生物学
- 批准号:
484000 - 财政年份:2023
- 资助金额:
$ 7.35万 - 项目类别:
Operating Grants