Integration of epidemiology, pathology, immunology and outcomes in colorectal cancer

结直肠癌流行病学、病理学、免疫学和结果的整合

基本信息

项目摘要

ABSTRACT Machine learning has the potential to transform pathologic diagnosis and to address very limited accessibility of expert pathology in low-income countries. Routine histology images of solid tumors contain an immense number of visual features that can be extracted and processed by artificial intelligence tools like machine learning, which excels at basic image analysis tasks such as tumor detection. In addition, machine learning can also predict clinically relevant features directly from histology images including microsatellite instability and immune features that independently predict prognosis response to therapy. This large, multicultural, racially and ethnically diverse study uses images of whole slides from routinely collected clinical specimens and applies computational pathology methods and digital spatial expression profiling to quantifiably improve CRC diagnosis, prognosis and predictive models together with clinical, epidemiologic and genetic data. The study goals will be accomplished through three specific aims. In Aim 1, we will apply novel machine learning algorithms from whole slide images to reproducibly identify MSI, histopathologic and immune features of colorectal cancer in racially/ethnically diverse populations. We will study H&E slides from 6,751 CRC cases, digitizing existing slides from 5,551 CRC cases and 1,200 new cases of CRC with contemporaneous clinical and epidemiologic data. Then, we will apply deep learning methods to accurately identify histopathologic features and immune characteristics of CRC. We will use a robust training validation, and testing design (70%/15%/15%) to ensure the rigor and reproducibility of our findings. In Aim 2, we will test whether machine learning algorithms that predict MSI and immune features related to CRC prognosis improve with the addition of clinical, epidemiologic, and germline genetic data. We will use machine learning statistical methods to test whether algorithms developed in Aim 1 improve prediction of overall survival and response to therapy with the addition of supplemental information beyond whole slide digital images. Finally, in Aim 3, we will compare the information derived from digital spatial profiling of expressed proteins in colorectal tumors with the information derived from Immunoscore quantification of lymphocyte populations at the tumor center (CT) and the invasive margin (IM), and explore whether these measures improve the models developed in Aims 1 and 2 in a subset of samples. We will perform GeoMx digital spatial profiling of 56 proteins expressed in 150 Stage I-III TNM colorectal cancers to compare the performance of digital spatial profiling to Immunoscore, a scoring system relying exclusively on expression patterns of CD3+ and CD8+ T cells. This study takes advantage of pathologic, epidemiologic, clinical, immunologic and germline genetic data from racially/ethnically diverse CRC patients from California, Detroit, New York, Florida, Puerto Rico, Israel and Spain. Our overarching goal is to improve the efficient diagnosis of colorectal cancer with clinically impactful immune profiles.
摘要

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Transformer-based biomarker prediction from colorectal cancer histology: A large-scale multicentric study.
  • DOI:
    10.1016/j.ccell.2023.08.002
  • 发表时间:
    2023-09-11
  • 期刊:
  • 影响因子:
    50.3
  • 作者:
    Wagner, Sophia J.;Reisenbuechler, Daniel;West, Nicholas P.;Niehues, Jan Moritz;Zhu, Jiefu;Foersch, Sebastian;Veldhuizen, Gregory Patrick;Quirke, Philip;Grabsch, Heike I.;van den Brandt, Piet A.;Hutchins, Gordon G. A.;Richman, Susan D.;Yuan, Tanwei;Langer, Rupert;Jenniskens, Josien C. A.;Offermans, Kelly;Mueller, Wolfram;Gray, Richard;Gruber, Stephen B.;Greenson, Joel K.;Rennert, Gad;Bonner, Joseph D.;Schmolze, Daniel;Jonnagaddala, Jitendra;Hawkins, Nicholas J.;Ward, Robyn L.;Morton, Dion;Seymour, Matthew;Magill, Laura;Nowak, Marta;Hay, Jennifer;Koelzer, Viktor H.;Church, David N.;Matek, Christian;Geppert, Carol;Peng, Chaolong;Zhi, Cheng;Ouyang, Xiaoming;James, Jacqueline A.;Loughrey, Maurice B.;Salto-Tellez, Manuel;Brenner, Hermann;Hoffmeister, Michael;Truhn, Daniel;Schnabel, Julia A.;Boxberg, Melanie;Peng, Tingying;Kather, Jakob Nikolas
  • 通讯作者:
    Kather, Jakob Nikolas
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

STEPHEN B GRUBER其他文献

STEPHEN B GRUBER的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('STEPHEN B GRUBER', 18)}}的其他基金

Integration of epidemiology, pathology, immunology and outcomes in colorectal cancer
结直肠癌流行病学、病理学、免疫学和结果的整合
  • 批准号:
    10446964
  • 财政年份:
    2022
  • 资助金额:
    $ 65.01万
  • 项目类别:
The Epidemiology of Immune Responses in Colorectal Cancer
结直肠癌免疫反应的流行病学
  • 批准号:
    8947024
  • 财政年份:
    2015
  • 资助金额:
    $ 65.01万
  • 项目类别:
The Epidemiology of Immune Responses in Colorectal Cancer
结直肠癌免疫反应的流行病学
  • 批准号:
    10118673
  • 财政年份:
    2015
  • 资助金额:
    $ 65.01万
  • 项目类别:
The Epidemiology of Immune Responses in Colorectal Cancer
结直肠癌免疫反应的流行病学
  • 批准号:
    9312776
  • 财政年份:
    2015
  • 资助金额:
    $ 65.01万
  • 项目类别:
Epidemiologic Studies
流行病学研究
  • 批准号:
    8330346
  • 财政年份:
    2011
  • 资助金额:
    $ 65.01万
  • 项目类别:
Transdisciplinary Studies of Genetic Variation in Colorectal Cancer
结直肠癌遗传变异的跨学科研究
  • 批准号:
    8330347
  • 财政年份:
    2010
  • 资助金额:
    $ 65.01万
  • 项目类别:
Epidemiologic Studies
流行病学研究
  • 批准号:
    7933377
  • 财政年份:
    2010
  • 资助金额:
    $ 65.01万
  • 项目类别:
Biological Studies
生物学研究
  • 批准号:
    7933376
  • 财政年份:
    2010
  • 资助金额:
    $ 65.01万
  • 项目类别:
Transdisciplinary Studies of Genetic Variation in Colorectal Cancer
结直肠癌遗传变异的跨学科研究
  • 批准号:
    8118433
  • 财政年份:
    2010
  • 资助金额:
    $ 65.01万
  • 项目类别:
Career Development Program
职业发展计划
  • 批准号:
    7893344
  • 财政年份:
    2010
  • 资助金额:
    $ 65.01万
  • 项目类别:

相似国自然基金

靶向递送一氧化碳调控AGE-RAGE级联反应促进糖尿病创面愈合研究
  • 批准号:
    JCZRQN202500010
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
对香豆酸抑制AGE-RAGE-Ang-1通路改善海马血管生成障碍发挥抗阿尔兹海默病作用
  • 批准号:
    2025JJ70209
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
AGE-RAGE通路调控慢性胰腺炎纤维化进程的作用及分子机制
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    0 万元
  • 项目类别:
    面上项目
甜茶抑制AGE-RAGE通路增强突触可塑性改善小鼠抑郁样行为
  • 批准号:
    2023JJ50274
  • 批准年份:
    2023
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
蒙药额尔敦-乌日勒基础方调控AGE-RAGE信号通路改善术后认知功能障碍研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    33 万元
  • 项目类别:
    地区科学基金项目
LncRNA GAS5在2型糖尿病动脉粥样硬化中对AGE-RAGE 信号通路上相关基因的调控作用及机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
围绕GLP1-Arginine-AGE/RAGE轴构建探针组学方法探索大柴胡汤异病同治的效应机制
  • 批准号:
    81973577
  • 批准年份:
    2019
  • 资助金额:
    55.0 万元
  • 项目类别:
    面上项目
AGE/RAGE通路microRNA编码基因多态性与2型糖尿病并发冠心病的关联研究
  • 批准号:
    81602908
  • 批准年份:
    2016
  • 资助金额:
    18.0 万元
  • 项目类别:
    青年科学基金项目
高血糖激活滑膜AGE-RAGE-PKC轴致骨关节炎易感的机制研究
  • 批准号:
    81501928
  • 批准年份:
    2015
  • 资助金额:
    18.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: Resolving the LGM ventilation age conundrum: New radiocarbon records from high sedimentation rate sites in the deep western Pacific
合作研究:解决LGM通风年龄难题:西太平洋深部高沉降率地点的新放射性碳记录
  • 批准号:
    2341426
  • 财政年份:
    2024
  • 资助金额:
    $ 65.01万
  • 项目类别:
    Continuing Grant
Collaborative Research: Resolving the LGM ventilation age conundrum: New radiocarbon records from high sedimentation rate sites in the deep western Pacific
合作研究:解决LGM通风年龄难题:西太平洋深部高沉降率地点的新放射性碳记录
  • 批准号:
    2341424
  • 财政年份:
    2024
  • 资助金额:
    $ 65.01万
  • 项目类别:
    Continuing Grant
PROTEMO: Emotional Dynamics Of Protective Policies In An Age Of Insecurity
PROTEMO:不安全时代保护政​​策的情绪动态
  • 批准号:
    10108433
  • 财政年份:
    2024
  • 资助金额:
    $ 65.01万
  • 项目类别:
    EU-Funded
The role of dietary and blood proteins in the prevention and development of major age-related diseases
膳食和血液蛋白在预防和发展主要与年龄相关的疾病中的作用
  • 批准号:
    MR/X032809/1
  • 财政年份:
    2024
  • 资助金额:
    $ 65.01万
  • 项目类别:
    Fellowship
Atomic Anxiety in the New Nuclear Age: How Can Arms Control and Disarmament Reduce the Risk of Nuclear War?
新核时代的原子焦虑:军控与裁军如何降低核战争风险?
  • 批准号:
    MR/X034690/1
  • 财政年份:
    2024
  • 资助金额:
    $ 65.01万
  • 项目类别:
    Fellowship
Walkability and health-related quality of life in Age-Friendly Cities (AFCs) across Japan and the Asia-Pacific
日本和亚太地区老年友好城市 (AFC) 的步行适宜性和与健康相关的生活质量
  • 批准号:
    24K13490
  • 财政年份:
    2024
  • 资助金额:
    $ 65.01万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Discovering the (R)Evolution of EurAsian Steppe Metallurgy: Social and environmental impact of the Bronze Age steppes metal-driven economy
发现欧亚草原冶金的(R)演变:青铜时代草原金属驱动型经济的社会和环境影响
  • 批准号:
    EP/Z00022X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 65.01万
  • 项目类别:
    Research Grant
ICF: Neutrophils and cellular senescence: A vicious circle promoting age-related disease.
ICF:中性粒细胞和细胞衰老:促进与年龄相关疾病的恶性循环。
  • 批准号:
    MR/Y003365/1
  • 财政年份:
    2024
  • 资助金额:
    $ 65.01万
  • 项目类别:
    Research Grant
Doctoral Dissertation Research: Effects of age of acquisition in emerging sign languages
博士论文研究:新兴手语习得年龄的影响
  • 批准号:
    2335955
  • 财政年份:
    2024
  • 资助金额:
    $ 65.01万
  • 项目类别:
    Standard Grant
Shaping Competition in the Digital Age (SCiDA) - Principles, tools and institutions of digital regulation in the UK, Germany and the EU
塑造数字时代的竞争 (SCiDA) - 英国、德国和欧盟的数字监管原则、工具和机构
  • 批准号:
    AH/Y007549/1
  • 财政年份:
    2024
  • 资助金额:
    $ 65.01万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了