Integration of epidemiology, pathology, immunology and outcomes in colorectal cancer
结直肠癌流行病学、病理学、免疫学和结果的整合
基本信息
- 批准号:10709493
- 负责人:
- 金额:$ 65.01万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-22 至 2027-08-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAgeAlgorithmsArtificial IntelligenceCD3 AntigensCD8-Positive T-LymphocytesCaliforniaCancer PrognosisCharacteristicsClinicalClinical DataColorectal CancerColorectal NeoplasmsComputersComputing MethodologiesCrohn&aposs diseaseDataDetectionDiagnosisEnsureEpidemiologyExpression ProfilingFailureFloridaGeneticGoalsHistologyImageImage AnalysisImmuneImmune responseImmune systemImmunologicsImmunologyImmunotherapyIsraelLocationLymphocyteLymphoidMachine LearningMapsMeasuresMethodsMicrosatellite InstabilityMicroscopicModelingMolecularNew YorkOther GeneticsOutcomePathologicPathologistPathologyPatientsPatternPerformancePersonsPhysiciansPopulationPopulation HeterogeneityPredictive ValueProcessPrognosisProteinsPuerto RicoReactionRecording of previous eventsReproducibilityResearchSamplingSlideSolid NeoplasmSpainSpatial DistributionSpecimenStatistical MethodsSystemTNMTechnologyTestingTrainingTumor-Infiltrating LymphocytesValidationVisualaccurate diagnosiscancer diagnosiscancer survivalclinical predictorsclinically relevantcolon cancer patientscolorectal cancer treatmentdeep learningdesigndigitaldigital imagingdriver mutationeffective therapyepidemiologic dataethnic diversityimmunoreactionimmunoregulationimprovedimproved outcomeinsightlearning strategylow income countrymachine learning algorithmmachine learning prediction algorithmmedical specialtiesnovelprediction algorithmpredictive modelingprognosticprognostic modelprognostic valueprotein expressionracial diversityresponsesexsurvival predictiontask analysistooltreatment responsetumorwhole slide imaging
项目摘要
ABSTRACT
Machine learning has the potential to transform pathologic diagnosis and to address very limited accessibility of
expert pathology in low-income countries. Routine histology images of solid tumors contain an immense number
of visual features that can be extracted and processed by artificial intelligence tools like machine learning, which
excels at basic image analysis tasks such as tumor detection. In addition, machine learning can also predict
clinically relevant features directly from histology images including microsatellite instability and immune features
that independently predict prognosis response to therapy. This large, multicultural, racially and ethnically diverse
study uses images of whole slides from routinely collected clinical specimens and applies computational
pathology methods and digital spatial expression profiling to quantifiably improve CRC diagnosis, prognosis and
predictive models together with clinical, epidemiologic and genetic data. The study goals will be accomplished
through three specific aims. In Aim 1, we will apply novel machine learning algorithms from whole slide images
to reproducibly identify MSI, histopathologic and immune features of colorectal cancer in racially/ethnically
diverse populations. We will study H&E slides from 6,751 CRC cases, digitizing existing slides from 5,551 CRC
cases and 1,200 new cases of CRC with contemporaneous clinical and epidemiologic data. Then, we will apply
deep learning methods to accurately identify histopathologic features and immune characteristics of CRC. We
will use a robust training validation, and testing design (70%/15%/15%) to ensure the rigor and reproducibility of
our findings. In Aim 2, we will test whether machine learning algorithms that predict MSI and immune features
related to CRC prognosis improve with the addition of clinical, epidemiologic, and germline genetic data. We will
use machine learning statistical methods to test whether algorithms developed in Aim 1 improve prediction of
overall survival and response to therapy with the addition of supplemental information beyond whole slide digital
images. Finally, in Aim 3, we will compare the information derived from digital spatial profiling of expressed
proteins in colorectal tumors with the information derived from Immunoscore quantification of lymphocyte
populations at the tumor center (CT) and the invasive margin (IM), and explore whether these measures improve
the models developed in Aims 1 and 2 in a subset of samples. We will perform GeoMx digital spatial profiling of
56 proteins expressed in 150 Stage I-III TNM colorectal cancers to compare the performance of digital spatial
profiling to Immunoscore, a scoring system relying exclusively on expression patterns of CD3+ and CD8+ T cells.
This study takes advantage of pathologic, epidemiologic, clinical, immunologic and germline genetic data from
racially/ethnically diverse CRC patients from California, Detroit, New York, Florida, Puerto Rico, Israel and Spain.
Our overarching goal is to improve the efficient diagnosis of colorectal cancer with clinically impactful immune
profiles.
摘要
机器学习有可能改变病理诊断,并解决非常有限的可访问性。
低收入国家的病理学专家。实体瘤的常规组织学图像包含大量
视觉特征可以被机器学习等人工智能工具提取和处理,
擅长基本的图像分析任务,如肿瘤检测。此外,机器学习还可以预测
直接来自组织学图像的临床相关特征,包括微卫星不稳定性和免疫特征
独立预测对治疗的预后反应。这个庞大的、多元文化的、种族和民族多样的
研究使用常规收集的临床标本的整个载玻片的图像,并应用计算机
病理学方法和数字空间表达谱,以量化地改善CRC诊断、预后和
预测模型以及临床、流行病学和遗传学数据。研究目标将得以实现
通过三个具体目标。在目标1中,我们将从整个幻灯片图像中应用新的机器学习算法
在种族/人种中可重复地鉴定结直肠癌的MSI、组织病理学和免疫特征,
不同的人群。我们将研究6,751例CRC病例的H&E幻灯片,将5,551例CRC的现有幻灯片数字化
例和1,200例新的CRC病例,并具有同期的临床和流行病学数据。然后,我们将申请
深度学习方法,以准确识别CRC的组织病理学特征和免疫特征。我们
将使用强大的培训验证和测试设计(70%/15%/15%),以确保
我们的发现在目标2中,我们将测试预测MSI和免疫特征的机器学习算法是否
临床、流行病学和生殖系遗传学数据的加入,改善了与CRC预后相关的基因。我们将
使用机器学习统计方法来测试目标1中开发的算法是否可以提高对
总生存期和对治疗的反应,以及除完整数字载玻片外的补充信息
图像.最后,在目标3中,我们将比较从表达的数字空间剖面中获得的信息,
结直肠肿瘤中的蛋白质与来自淋巴细胞免疫评分定量的信息
在肿瘤中心(CT)和浸润边缘(IM)的人群,并探讨这些措施是否改善
目标1和目标2中在样本子集中开发的模型。我们将执行GeoMx数字空间分析,
在150例I-III期TNM结直肠癌中表达的56种蛋白质,以比较数字空间
免疫评分是一种完全依赖于CD 3+和CD 8 + T细胞表达模式的评分系统。
这项研究利用了来自美国的病理学、流行病学、临床、免疫学和生殖系遗传学数据,
来自加州、底特律、纽约、佛罗里达、波多黎各、以色列和西班牙的种族/人种多样化的CRC患者。
我们的首要目标是通过具有临床影响力的免疫学方法来提高结直肠癌的有效诊断。
数据区.
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Transformer-based biomarker prediction from colorectal cancer histology: A large-scale multicentric study.
- DOI:10.1016/j.ccell.2023.08.002
- 发表时间:2023-09-11
- 期刊:
- 影响因子:50.3
- 作者:Wagner, Sophia J.;Reisenbuechler, Daniel;West, Nicholas P.;Niehues, Jan Moritz;Zhu, Jiefu;Foersch, Sebastian;Veldhuizen, Gregory Patrick;Quirke, Philip;Grabsch, Heike I.;van den Brandt, Piet A.;Hutchins, Gordon G. A.;Richman, Susan D.;Yuan, Tanwei;Langer, Rupert;Jenniskens, Josien C. A.;Offermans, Kelly;Mueller, Wolfram;Gray, Richard;Gruber, Stephen B.;Greenson, Joel K.;Rennert, Gad;Bonner, Joseph D.;Schmolze, Daniel;Jonnagaddala, Jitendra;Hawkins, Nicholas J.;Ward, Robyn L.;Morton, Dion;Seymour, Matthew;Magill, Laura;Nowak, Marta;Hay, Jennifer;Koelzer, Viktor H.;Church, David N.;Matek, Christian;Geppert, Carol;Peng, Chaolong;Zhi, Cheng;Ouyang, Xiaoming;James, Jacqueline A.;Loughrey, Maurice B.;Salto-Tellez, Manuel;Brenner, Hermann;Hoffmeister, Michael;Truhn, Daniel;Schnabel, Julia A.;Boxberg, Melanie;Peng, Tingying;Kather, Jakob Nikolas
- 通讯作者:Kather, Jakob Nikolas
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
STEPHEN B GRUBER其他文献
STEPHEN B GRUBER的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('STEPHEN B GRUBER', 18)}}的其他基金
Integration of epidemiology, pathology, immunology and outcomes in colorectal cancer
结直肠癌流行病学、病理学、免疫学和结果的整合
- 批准号:
10446964 - 财政年份:2022
- 资助金额:
$ 65.01万 - 项目类别:
The Epidemiology of Immune Responses in Colorectal Cancer
结直肠癌免疫反应的流行病学
- 批准号:
8947024 - 财政年份:2015
- 资助金额:
$ 65.01万 - 项目类别:
The Epidemiology of Immune Responses in Colorectal Cancer
结直肠癌免疫反应的流行病学
- 批准号:
10118673 - 财政年份:2015
- 资助金额:
$ 65.01万 - 项目类别:
The Epidemiology of Immune Responses in Colorectal Cancer
结直肠癌免疫反应的流行病学
- 批准号:
9312776 - 财政年份:2015
- 资助金额:
$ 65.01万 - 项目类别:
Transdisciplinary Studies of Genetic Variation in Colorectal Cancer
结直肠癌遗传变异的跨学科研究
- 批准号:
8330347 - 财政年份:2010
- 资助金额:
$ 65.01万 - 项目类别:
Transdisciplinary Studies of Genetic Variation in Colorectal Cancer
结直肠癌遗传变异的跨学科研究
- 批准号:
8118433 - 财政年份:2010
- 资助金额:
$ 65.01万 - 项目类别:
相似国自然基金
靶向递送一氧化碳调控AGE-RAGE级联反应促进糖尿病创面愈合研究
- 批准号:JCZRQN202500010
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
对香豆酸抑制AGE-RAGE-Ang-1通路改善海马血管生成障碍发挥抗阿尔兹海默病作用
- 批准号:2025JJ70209
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
AGE-RAGE通路调控慢性胰腺炎纤维化进程的作用及分子机制
- 批准号:
- 批准年份:2024
- 资助金额:0 万元
- 项目类别:面上项目
甜茶抑制AGE-RAGE通路增强突触可塑性改善小鼠抑郁样行为
- 批准号:2023JJ50274
- 批准年份:2023
- 资助金额:0.0 万元
- 项目类别:省市级项目
蒙药额尔敦-乌日勒基础方调控AGE-RAGE信号通路改善术后认知功能障碍研究
- 批准号:
- 批准年份:2022
- 资助金额:33 万元
- 项目类别:地区科学基金项目
补肾健脾祛瘀方调控AGE/RAGE信号通路在再生障碍性贫血骨髓间充质干细胞功能受损的作用与机制研究
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
LncRNA GAS5在2型糖尿病动脉粥样硬化中对AGE-RAGE 信号通路上相关基因的调控作用及机制研究
- 批准号:
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
围绕GLP1-Arginine-AGE/RAGE轴构建探针组学方法探索大柴胡汤异病同治的效应机制
- 批准号:81973577
- 批准年份:2019
- 资助金额:55.0 万元
- 项目类别:面上项目
AGE/RAGE通路microRNA编码基因多态性与2型糖尿病并发冠心病的关联研究
- 批准号:81602908
- 批准年份:2016
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
高血糖激活滑膜AGE-RAGE-PKC轴致骨关节炎易感的机制研究
- 批准号:81501928
- 批准年份:2015
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: Resolving the LGM ventilation age conundrum: New radiocarbon records from high sedimentation rate sites in the deep western Pacific
合作研究:解决LGM通风年龄难题:西太平洋深部高沉降率地点的新放射性碳记录
- 批准号:
2341426 - 财政年份:2024
- 资助金额:
$ 65.01万 - 项目类别:
Continuing Grant
Collaborative Research: Resolving the LGM ventilation age conundrum: New radiocarbon records from high sedimentation rate sites in the deep western Pacific
合作研究:解决LGM通风年龄难题:西太平洋深部高沉降率地点的新放射性碳记录
- 批准号:
2341424 - 财政年份:2024
- 资助金额:
$ 65.01万 - 项目类别:
Continuing Grant
PROTEMO: Emotional Dynamics Of Protective Policies In An Age Of Insecurity
PROTEMO:不安全时代保护政策的情绪动态
- 批准号:
10108433 - 财政年份:2024
- 资助金额:
$ 65.01万 - 项目类别:
EU-Funded
The role of dietary and blood proteins in the prevention and development of major age-related diseases
膳食和血液蛋白在预防和发展主要与年龄相关的疾病中的作用
- 批准号:
MR/X032809/1 - 财政年份:2024
- 资助金额:
$ 65.01万 - 项目类别:
Fellowship
Atomic Anxiety in the New Nuclear Age: How Can Arms Control and Disarmament Reduce the Risk of Nuclear War?
新核时代的原子焦虑:军控与裁军如何降低核战争风险?
- 批准号:
MR/X034690/1 - 财政年份:2024
- 资助金额:
$ 65.01万 - 项目类别:
Fellowship
Walkability and health-related quality of life in Age-Friendly Cities (AFCs) across Japan and the Asia-Pacific
日本和亚太地区老年友好城市 (AFC) 的步行适宜性和与健康相关的生活质量
- 批准号:
24K13490 - 财政年份:2024
- 资助金额:
$ 65.01万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Discovering the (R)Evolution of EurAsian Steppe Metallurgy: Social and environmental impact of the Bronze Age steppes metal-driven economy
发现欧亚草原冶金的(R)演变:青铜时代草原金属驱动型经济的社会和环境影响
- 批准号:
EP/Z00022X/1 - 财政年份:2024
- 资助金额:
$ 65.01万 - 项目类别:
Research Grant
ICF: Neutrophils and cellular senescence: A vicious circle promoting age-related disease.
ICF:中性粒细胞和细胞衰老:促进与年龄相关疾病的恶性循环。
- 批准号:
MR/Y003365/1 - 财政年份:2024
- 资助金额:
$ 65.01万 - 项目类别:
Research Grant
Doctoral Dissertation Research: Effects of age of acquisition in emerging sign languages
博士论文研究:新兴手语习得年龄的影响
- 批准号:
2335955 - 财政年份:2024
- 资助金额:
$ 65.01万 - 项目类别:
Standard Grant
Shaping Competition in the Digital Age (SCiDA) - Principles, tools and institutions of digital regulation in the UK, Germany and the EU
塑造数字时代的竞争 (SCiDA) - 英国、德国和欧盟的数字监管原则、工具和机构
- 批准号:
AH/Y007549/1 - 财政年份:2024
- 资助金额:
$ 65.01万 - 项目类别:
Research Grant














{{item.name}}会员




