Tissue engineering in spinal cord regeneration
组织工程在脊髓再生中的应用
基本信息
- 批准号:7259709
- 负责人:
- 金额:$ 33.1万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-04-01 至 2012-03-31
- 项目状态:已结题
- 来源:
- 关键词:AdhesivesAdultAffectAnabolismArchitectureArginineAstrocytesAxonBiocompatible MaterialsBiologicalCaliberCellsCerebellar cortex structureChemicalsChondroitin ABC LyaseChondroitin SulfatesCicatrixControlled EnvironmentCuesDailyDepositionDevelopmentDevicesDiseaseDisruptionDistalElectron MicroscopyEngineeringEnvironmentEvaluationExtracellular MatrixFailureFascicleFiberFilamentGlycineGoalsHindlimbHistologyImmunohistochemistryIn VitroIndividualInfusion PumpsInfusion proceduresInjuryInorganic SulfatesIon ChannelIsoleucineLamininLeadLengthLesionLiteratureMembraneModelingMolecularNatural regenerationNeocortexNerveNerve RegenerationNeural tubeNeuraxisNeuritesNeuronsNumbersPathologic ProcessesPatternPeptidesPerformancePrincipal InvestigatorPropertyProteoglycanRadialRangeRateRattusRecovery of FunctionRegenerative MedicineResearch PersonnelRoleRouteSchwann CellsSerineSignal TransductionSiteSpinal CordSpinal GangliaSpinal cord injuryStaining methodStainsSupporting CellSynapsesTestingTherapeutic AgentsTherapeutic InterventionThin FilamentTimeTissue EngineeringTissuesTyrosineUnspecified or Sulfate Ion SulfatesVariantWalkingWorkarginyl-glycyl-aspartyl-serineaxon growthaxon regenerationaxonal guidanceaxonal pathfindingbasebehavior measurementcareercentral nervous system injurycentral pattern generatorcontrolled releasedensitydesign and constructiondisabilityfallshuman tissueimplantationin vivoin vivo Modelinjuredmigrationmyelinationnervous system disorderneural circuitorgan regenerationprogramsreinnervationrelating to nervous systemrepairedresilienceresponsescaffoldsizespinal cord regenerationsuccesstyrosyl-isoleucyl-glycyl-seryl-arginine
项目摘要
DESCRIPTION (provided by applicant): A damaging or pathological process that disrupts the continuity of axons in the adult mammalian central nervous system (CMS) often results in permanent disability due to the failure of injured axons to regenerate. Current therapeutic interventions are short of eliciting a robust regenerative response that leads to a decent degree of functional recovery. Recently, the emergence of neuronal bridging devices based upon tissue engineering principles offers new hope for the treatment and manipulation of CMS injuries and diseases. By engineering a controlled environment at the lesion site, neural bridging devices awaken the intrinsic ability of CMS axons to regenerate across and beyond the site of injury to reach their appropriate targets. The combined use of material scaffolds containing guidance cues with adhesive molecules and cells of selective properties further confers vitality and resilience to the devices. Our long-term goal is to develop a clinically applicable tissue-engineered neuronal bridging device to repair damaged CNS nerve tracts. The proposed project aims to construct and evaluate a tissue-engineered bridging device based upon a multi-filament entubulation approach in which bundles of ultra-thin filaments are entubulated into a semi- permeable biodegradable hollow fiber membrane sleeve. Our hypothesis is that such a bridging device will convey strong unidirectional guidance cues and define a well-controlled environment for regenerating axons, and therefore promote and guide axonal regeneration following spinal cord injury, leading to a greater degree of functional recovery compared to conventional neuronal bridging strategies. Aim #1 is to evaluate the effect of the packing density of the filament bundles within the HFM entubulation sleeve on the directional outgrowth length and directionality of axons in vitro. Aim #2 is to examine the efficiency of multifilament bridging device in promoting axonal outgrowth using a spinal cord hemisection model in vivo. Aim #3 is to determine whether a combined strategy aimed at 1) enhancing directional regeneration across the lesion gap, and 2) inhibiting glial scar formation at the device-host interface will further promote axonal growth to the lumbar central pattern generator (CPG; an intact neural circuit located within the L1-2 segment that responsible for hindlimb locomotor function), resulting in both anatomical reconnection and functional recovery.
描述(由申请人提供):一种破坏或病理过程,破坏成人哺乳动物中枢神经系统(CMS)中轴突的连续性,通常由于受伤的轴突无法再生而导致永久性残疾。当前的治疗干预措施缺乏引起强大的再生反应,从而导致功能恢复程度。最近,基于组织工程原理的神经元桥接设备的出现为治疗和操纵CMS损伤和疾病提供了新的希望。通过在病变部位进行控制环境,神经桥接设备唤醒了CMS轴突在跨伤害部位再生以达到其适当目标的内在能力。含有粘合剂分子和选择性特性细胞的指导线索的材料支架的联合使用进一步赋予了对设备的活力和弹性。我们的长期目标是开发一种临床适用的组织工程神经元桥接装置来修复受损的中枢神经系统神经区。拟议的项目旨在基于多丝诱因方法来构建和评估组织设计的桥接装置,其中将一束超薄细丝捆绑成半渗透的可生物降解的空心纤维纤维膜袖。我们的假设是,这种桥接装置将传达强大的单向引导线索,并为脊髓损伤后促进和指导轴突再生,定义了一个良好控制的环境,从而促进和指导轴突再生,从而导致与常规神经元桥梁策略相比,功能恢复更大程度。目的#1是评估HFM诱因套筒内细丝束的填料密度对轴突在体外的定向产物长度和方向性上的影响。 AIM#2是检查使用体内脊髓半分配模型促进轴突生长的多腔桥接装置的效率。目的#3是确定针对1)增强病变间隙的方向再生的组合策略是否会进一步促进腰部中央模式生成器(CPG; CPG; CPG; CPG; CPG;一个完整的神经电路的轴突生长)在L1-2段中的轴突增长,该范围位于L1-2段中,负责Hindlimb locomotor函数的L1- 2段,均可恢复。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
XUEJUN WEN其他文献
XUEJUN WEN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('XUEJUN WEN', 18)}}的其他基金
Antimicrobial and Biocompatible Endotracheal Tubes
抗菌和生物相容性气管插管
- 批准号:
9763984 - 财政年份:2018
- 资助金额:
$ 33.1万 - 项目类别:
RFID based Wireless System for Self-powered Implantable Pediatric Cardiac Sensors
基于 RFID 的自供电植入式儿科心脏传感器无线系统
- 批准号:
9265930 - 财政年份:2016
- 资助金额:
$ 33.1万 - 项目类别:
Towards the development of a "living" cochlear implant
致力于开发“活的”人工耳蜗
- 批准号:
7496400 - 财政年份:2007
- 资助金额:
$ 33.1万 - 项目类别:
Towards the development of a "living" cochlear implant
致力于开发“活的”人工耳蜗
- 批准号:
7328415 - 财政年份:2007
- 资助金额:
$ 33.1万 - 项目类别:
相似国自然基金
成人免疫性血小板减少症(ITP)中血小板因子4(PF4)通过调节CD4+T淋巴细胞糖酵解水平影响Th17/Treg平衡的病理机制研究
- 批准号:82370133
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
儿童期受虐经历影响成年人群幸福感:行为、神经机制与干预研究
- 批准号:32371121
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
依恋相关情景模拟对成人依恋安全感的影响及机制
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
依恋相关情景模拟对成人依恋安全感的影响及机制
- 批准号:32200888
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
生活方式及遗传背景对成人不同生命阶段寿命及死亡的影响及机制的队列研究
- 批准号:82173590
- 批准年份:2021
- 资助金额:56.00 万元
- 项目类别:面上项目
相似海外基金
Mechanisms underlying a decline in neural stem cell migration during aging
衰老过程中神经干细胞迁移下降的机制
- 批准号:
10750482 - 财政年份:2023
- 资助金额:
$ 33.1万 - 项目类别:
Reagentless Sensor Technologies For Continuous Monitoring of Heart Failure Biomarkers
用于连续监测心力衰竭生物标志物的无试剂传感器技术
- 批准号:
10636089 - 财政年份:2023
- 资助金额:
$ 33.1万 - 项目类别:
Blending Dentin to Dentin: Biometric Hydrogels for Dentin Tissue Engineering
将牙本质与牙本质混合:用于牙本质组织工程的生物识别水凝胶
- 批准号:
10795693 - 财政年份:2023
- 资助金额:
$ 33.1万 - 项目类别:
Volumetric analysis of epithelial morphogenesis with high spatiotemporal resolution
高时空分辨率上皮形态发生的体积分析
- 批准号:
10586534 - 财政年份:2023
- 资助金额:
$ 33.1万 - 项目类别:
Sex differences in the effects of prior social isolation stress on stroke outcomes
先前的社会孤立压力对卒中结果影响的性别差异
- 批准号:
10752478 - 财政年份:2023
- 资助金额:
$ 33.1万 - 项目类别: