Super-Multiplexed Molecular Sensing in Live Cells
活细胞中的超级多重分子传感
基本信息
- 批准号:10714549
- 负责人:
- 金额:$ 25.84万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-21 至 2027-06-30
- 项目状态:未结题
- 来源:
- 关键词:AffectBedsBiologicalCationsCellsCellular biologyChemicalsColorComplexCorrelation StudiesDetectionDevelopmentDyesElectronicsEventFluorescenceFluorescence MicroscopyFrequenciesGenerationsGoalsGrantImaging TechniquesImmunologyIonsLabelLasersLibrariesLipidsMembraneMetalsMicroscopeMicroscopyMitochondriaMolecularMolecular ProbesMonitorNatureNeurobiologyNitrilesNitrogenOptical MethodsOpticsOrganellesOxygenPhysiologic pulseProcessPropertyPumpRaman Spectrum AnalysisReporterReportingResearchResearch Project GrantsResolutionScanningSpeedStructureSystemTechniquesTechnologyTestingTimeTumor BiologyVisualizationXanthenesabsorptionbioimagingbiological systemscellular imagingcofactordesigndivalent metalexperimental studyfluorophoreimaging platforminstrumentationinterestmultiplexed imagingnew technologynext generationnoveloptical spectraratiometricresponsesensorsmall moleculespatiotemporalspiropyrantemporal measurementtool
项目摘要
The ability to visualize simultaneously a large number of distinct molecular species with high spatiotemporal resolution is crucial for interrogating complex and dynamic biological systems but still remains a major challenge in bioimaging. This is especially true for multiplex sensing of cellular analytes including reactive species, metal ions, and a plethora of difficult-to-tag metabolites. The prevalent fluorescence microscopy is severely limited for this because of the “color barrier”. Non-linear Raman imaging techniques such as Stimulated Raman Scattering (SRS) have become an increasingly valuable bioanalytical tool by offering a much greater number of resolvable ‘colors’ based on the narrower spectral linewidth of the Raman scattering bands. However, the lack of responsiveness of current Raman ‘tagging’ technologies hinders detection of changes in concentration of species of interest over time, limiting the application of SRS to the acquisition of mostly static pictures.
The goal of this project is to establish the next generation chemical toolbox and complementary instrumentation to enable high-speed, super-multiplexed monitoring of transient species and events in live cells, an important but otherwise intractable goal by other traditional optical methods. We propose to design and synthesize a library of novel responsive vibrational probes for SRS and electronic pre-resonance (epr) -SRS sensing of ions, small reactive molecules and enzymatic activity (Specific Aim 1), amenable for use with state-of-the-art SRS microscopy instrumentation. The new technology will be tested for the super-multiplexed visualization of these molecular targets in the context of ER and mitochondrial interactions and remodeling in live cells (Specific Aim 2). Successful completion of the proposed plan will establish a transformative technology that would enable concurrent, dynamic visualization of key molecular components, structures and processes with high spatiotemporal resolution. This capability is essential for gaining an integrated view of cellular networks and their crosstalk and would find wide applications in unraveling complex systems in the realm of cell biology, neurobiology, immunology, and tumor biology.
同时可视化具有高时空分辨率的大量不同分子种类的能力对于询问复杂和动态的生物系统是至关重要的,但仍然是生物成像中的主要挑战。这对于包括反应性物质、金属离子和大量难以标记的代谢物的细胞分析物的多重感测尤其如此。由于“色障”,流行的荧光显微镜在这方面受到严重限制。诸如受激拉曼散射(SRS)的非线性拉曼成像技术通过基于拉曼散射带的较窄光谱线宽提供更多数量的可分辨“颜色”,已经成为越来越有价值的生物分析工具。然而,当前的拉曼“标记”技术的响应性的缺乏阻碍了感兴趣的物质的浓度随时间的变化的检测,限制了SRS的应用以获取大多数静态图片。
该项目的目标是建立下一代化学工具箱和辅助仪器,以实现对活细胞中瞬时物种和事件的高速,超多路复用监测,这是其他传统光学方法的一个重要但难以实现的目标。我们建议设计和合成一个库的新型响应振动探针的SRS和电子预共振(EPR)-SRS传感的离子,小反应分子和酶活性(具体目标1),适合使用国家的最先进的SRS显微镜仪器。这项新技术将在ER和线粒体相互作用以及活细胞重塑的背景下测试这些分子靶点的超多路复用可视化(具体目标2)。拟议计划的成功完成将建立一种变革性技术,能够以高时空分辨率并行、动态地可视化关键分子组分、结构和过程。这种能力对于获得细胞网络及其串扰的综合视图至关重要,并且在细胞生物学,神经生物学,免疫学和肿瘤生物学领域的复杂系统中具有广泛的应用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Daniela Buccella其他文献
Daniela Buccella的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Daniela Buccella', 18)}}的其他基金
Molecular Probes Shed Light on Magnesium Homeostasis
分子探针揭示镁稳态
- 批准号:
10092973 - 财政年份:2017
- 资助金额:
$ 25.84万 - 项目类别:
Molecular Probes Shed Light on Magnesium Homeostasis
分子探针揭示镁稳态
- 批准号:
9290985 - 财政年份:2017
- 资助金额:
$ 25.84万 - 项目类别:
Near-IR Fluorescence Sensors for Zn2+ based on Single-Walled Carbon Nanotubes
基于单壁碳纳米管的 Zn2 近红外荧光传感器
- 批准号:
7940975 - 财政年份:2009
- 资助金额:
$ 25.84万 - 项目类别:
Near-IR Fluorescence Sensors for Zn2+ based on Single-Walled Carbon Nanotubes
基于单壁碳纳米管的 Zn2 近红外荧光传感器
- 批准号:
7749664 - 财政年份:2009
- 资助金额:
$ 25.84万 - 项目类别:
相似海外基金
Predicticting performance of carbon capture in intensified rotating packed beds using CFD
使用 CFD 预测强化旋转填充床中的碳捕获性能
- 批准号:
2883569 - 财政年份:2023
- 资助金额:
$ 25.84万 - 项目类别:
Studentship
Quantifying the status and success on restored native oyster Ostrea edulis beds in the Solent.
量化索伦特海峡恢复的本地牡蛎 Ostrea edulis 床的状态和成功。
- 批准号:
2759209 - 财政年份:2022
- 资助金额:
$ 25.84万 - 项目类别:
Studentship
Efficient and well-balanced numerical methods for nonhydrostatic three-dimensional shallow flows with moving beds and boundaries
具有移动床和边界的非静水三维浅流的高效且平衡的数值方法
- 批准号:
RGPAS-2020-00102 - 财政年份:2022
- 资助金额:
$ 25.84万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Treatment of resected brain tumour beds using nanoparticle enhanced radiotherapy
使用纳米粒子增强放射治疗治疗切除的脑瘤床
- 批准号:
10032278 - 财政年份:2022
- 资助金额:
$ 25.84万 - 项目类别:
Collaborative R&D
Energy to chemicals using direct electrical current flowing through dense beds
利用流过致密床的直接电流将能量转化为化学物质
- 批准号:
RGPIN-2019-03912 - 财政年份:2022
- 资助金额:
$ 25.84万 - 项目类别:
Discovery Grants Program - Individual
Efficient and well-balanced numerical methods for nonhydrostatic three-dimensional shallow flows with moving beds and boundaries
具有移动床和边界的非静水三维浅流的高效且平衡的数值方法
- 批准号:
RGPIN-2020-06278 - 财政年份:2022
- 资助金额:
$ 25.84万 - 项目类别:
Discovery Grants Program - Individual
SmUPS: Smart Uninterruptable Power Suppy for Home Healthcare Virtual Beds Monitoring and Power Backup
SmUPS:用于家庭医疗保健虚拟床监控和电源备份的智能不间断电源
- 批准号:
10045010 - 财政年份:2022
- 资助金额:
$ 25.84万 - 项目类别:
Grant for R&D
Exosome treatment-induced mechanisms in chronic wound beds - Resubmission - 1
慢性伤口床中外泌体治疗诱导的机制 - 重新提交 - 1
- 批准号:
10350276 - 财政年份:2022
- 资助金额:
$ 25.84万 - 项目类别:
Exosome treatment-induced mechanisms in chronic wound beds - Resubmission - 1
慢性伤口床中外泌体治疗诱导的机制 - 重新提交 - 1
- 批准号:
10588244 - 财政年份:2022
- 资助金额:
$ 25.84万 - 项目类别:
Research on technology to measure the condition of a wide range of river embankments and river beds in three dimensions in real time and with high accuracy
大范围河堤河床三维实时高精度测量技术研究
- 批准号:
22K04653 - 财政年份:2022
- 资助金额:
$ 25.84万 - 项目类别:
Grant-in-Aid for Scientific Research (C)