High spatiotemporal optical imaging to study dynamics of 3D cell motion and behavior in living organisms
高时空光学成像用于研究活体生物体中 3D 细胞运动和行为的动力学
基本信息
- 批准号:10715637
- 负责人:
- 金额:$ 37.54万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-15 至 2028-08-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAlgorithmsBehaviorBehavioralBiomedical ResearchCell ShapeCell SizeCell modelCell physiologyCellsCellular biologyDependenceDimensionsEnsureEvaluationEventFluorescenceFunctional disorderHistopathologyImageImaging DeviceImaging TechniquesIndividualLateralLightMaximum Likelihood EstimateMicroscopeMicroscopicMicroscopyModalityMonitorMorphogenesisMorphologyMotionNoiseOpticsOrganismOrganogenesisOutcomePhenotypeResearch PersonnelResolutionSignal TransductionTechniquesTechnologyTissuesTrainingattenuationautomated segmentationcell behaviorcell motilitycellular imagingdeep learningdetectorhigh resolution imagingimprovedin vivoin vivo monitoringlearning networklensmechanical stimulusmigrationmillimeternanometernanometer resolutionnanoscalenext generationnoveloptical imagingresponserestorationsensorspatiotemporaltemporal measurementultra high resolution
项目摘要
PROJECT SUMMARY/ABSTRACT
Behavioral analysis of individual cells that determines the structural phenotypes in response to the mechanical
stimuli or cell migration is important in organogenesis or tissue morphogenesis. Dynamic cell tracking, migration
trajectory monitoring, or temporal changes in cell shape or size are essential for modeling cellular interactions.
However, optical limits imposed by microscope objective lenses and light attenuation in tissue hinder high-
resolution evaluation of cell physiology on the dimension scale of μm to nm. Hence, several super-resolution
fluorescence modalities have been developed in recent years to enable nanoscale tissue characterization and
less damage to tissue histopathology. On the other hand, isotropic nanometer optical resolution for super-
resolution modalities is restricted to micron scale field-of-view (FOV). This physical limitation reflects in vivo
characterization up to cellular events only. Therefore, we propose to develop an advanced optical imaging
technique to achieve sub-cellular resolution, while providing user capability to modulate millimeter to centimeter
FOV for in vivo monitoring. Light-sheet fluorescent microscopy (LSFM) has emerged as a popular optical
sectioning modality in biomedical research, owing to rapid camera frame rates in conjunction with long working
distance excitation optics. Although LSFM provides intermediate-to-high resolution images, the resolution is
highly dependent on the confocal range of the excitation objective. To overcome this challenge, we propose to
apply the rolling shutter (RS) based-axially sweeping LSFM technique to de-couple the dependence of light sheet
FOV on excitation numerical aperture (NA). RS is a type of image capture in sCMOS camera that record the
frame line by line on an image sensor instead of capturing the entire frame all at once to improve signal-to-noise,
but it can create some unintended image distortions. Thus, we will incorporate the application of maximum
likelihood estimation as a post-acquisition restoration strategy to remove optical distortions introduced by RS
image acquisition to ensure isotropic lateral and axial nanometer resolution. After the acquisition, we will segment
and extract information on cell motion and morphology using a feature detector framework based on the Hessian
difference of Gaussian in combination with the watershed algorithm. The feature detector has been validated to
separate adjacent clustered cells in 3D undergoing rapid motion with high sensitivity. In addition, we will further
train our segmented cell images for deep-learning network and use for automatic segmentation and tracking.
The proposed microscopic technology will enable the quantitative characterization of cellular behavior effectively
in arbitrary FOV.
项目总结/文摘
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Juhyun Lee其他文献
Juhyun Lee的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Developing deep learning algorithms for studying infant brain and behavior relationships
开发深度学习算法来研究婴儿大脑和行为关系
- 批准号:
10263607 - 财政年份:2021
- 资助金额:
$ 37.54万 - 项目类别:
Real-time statistical algorithms for controlling neural dynamics and behavior
用于控制神经动力学和行为的实时统计算法
- 批准号:
10001503 - 财政年份:2018
- 资助金额:
$ 37.54万 - 项目类别:
Real-time statistical algorithms for controlling neural dynamics and behavior
用于控制神经动力学和行为的实时统计算法
- 批准号:
9789318 - 财政年份:2018
- 资助金额:
$ 37.54万 - 项目类别:
CCF-BSF: CIF: Small: Identification and Isolation of Malicious Behavior in Multi-Agent Optimization Algorithms
CCF-BSF:CIF:小:多代理优化算法中恶意行为的识别和隔离
- 批准号:
1714672 - 财政年份:2017
- 资助金额:
$ 37.54万 - 项目类别:
Standard Grant
EAGER: Using Learning Algorithms to Morph Product Behavior for Specific Task Contexts and Cognitive Styles of Users
EAGER:使用学习算法针对特定任务环境和用户认知风格来改变产品行为
- 批准号:
1548234 - 财政年份:2015
- 资助金额:
$ 37.54万 - 项目类别:
Standard Grant
CAREER: Human Behavior Assessment from Internet Usage: Foundations, Applications and Algorithms
职业:基于互联网使用的人类行为评估:基础、应用程序和算法
- 批准号:
1559588 - 财政年份:2015
- 资助金额:
$ 37.54万 - 项目类别:
Continuing Grant
CAREER: Human Behavior Assessment from Internet Usage: Foundations, Applications and Algorithms
职业:基于互联网使用的人类行为评估:基础、应用程序和算法
- 批准号:
1254117 - 财政年份:2013
- 资助金额:
$ 37.54万 - 项目类别:
Continuing Grant
Machine learning algorithms for automated analysis of player behavior in next-generation video games
用于自动分析下一代视频游戏中玩家行为的机器学习算法
- 批准号:
396001-2009 - 财政年份:2012
- 资助金额:
$ 37.54万 - 项目类别:
Collaborative Research and Development Grants
Machine learning algorithms for automated analysis of player behavior in next-generation video games
用于自动分析下一代视频游戏中玩家行为的机器学习算法
- 批准号:
396001-2009 - 财政年份:2011
- 资助金额:
$ 37.54万 - 项目类别:
Collaborative Research and Development Grants
Machine learning algorithms for automated analysis of player behavior in next-generation video games
用于自动分析下一代视频游戏中玩家行为的机器学习算法
- 批准号:
396001-2009 - 财政年份:2010
- 资助金额:
$ 37.54万 - 项目类别:
Collaborative Research and Development Grants














{{item.name}}会员




