Single-cell transcriptomics of complex bacterial communities
复杂细菌群落的单细胞转录组学
基本信息
- 批准号:10714260
- 负责人:
- 金额:$ 47万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-07-08 至 2028-06-30
- 项目状态:未结题
- 来源:
- 关键词:BacteriaBehaviorBehavioralBiological AssayCellsCommunitiesComplexCuesDataDevelopmentEcologyEngineeringEnvironmentFoundationsGene ExpressionGenesHorizontal Gene TransferHumanImageIndividualLigationMapsMeasurementMeasuresMetabolicMicrobial BiofilmsMicrobiologyNatureOrganismPathway interactionsPhenotypePlayPopulationPostdoctoral FellowPropertyPseudomonas aeruginosaRegulator GenesReporterResolutionRoleSamplingStaphylococcus aureusStructureSystemTechnologyTestingWorkbacterial communitybiological adaptation to stressbiological researchcell behaviorgene regulatory networkgut microbiotalaboratory equipmentmembermicrobialmicrobial communitymicrobiome researchmicrobiotanetwork modelsprogramsresponsesingle-cell RNA sequencingtooltraittranscriptomics
项目摘要
Project Summary
Gene expression in bacteria is heterogeneous even within genetically identical cells due to the stochastic
activation of many gene regulatory programs. The resulting phenotypic diversity often plays an important
functional role for bacterial communities, for example, facilitating horizontal gene transfer. This fundamentally
single-cell behavior cannot be resolved with population level measurements and, so far, has been studied in
pure cultures of genetically tractable organisms using low-throughput reporter-based assays. However, the
majority of bacteria in nature reside in complex microbial communities spatially organized into biofilms and
composed of multiple interacting members. Within such communities, a multitude of behaviors emerge from the
dynamic interplay of noisy gene expression states and responses to the heterogeneous microenvironment.
Absence of approaches for measuring phenotypic states within complex polymicrobial communities
simultaneously at systems scale and with single-cell resolution results in a lack of mechanistic understanding of
bacterial ecology and is therefore a critical barrier for the fields of microbiology and microbiome studies. During
my postdoc, I developed a high-throughput bacterial single-cell transcriptomics technology, microSPLiT
(microbial Split-Pool Ligation Transcriptomics), that allows to measure gene expression states in tens of
thousands of individual cells using only common laboratory equipment. In my lab, I aim to further extend
microSPLiT for single-cell transcriptomics of biofilms, as well as of complex bacterial consortia. Specifically, in
my first project we will create a single-cell gene expression map of single- and dual-species biofilms of
Pseudomonas aeruginosa and Staphylococcus aureus by a combination of spatial single-cell RNA sequencing
and time-lapse imaging. We will characterize where and how the specialized phenotypic subpopulations emerge
at different stages of biofilm development and how they change in response to competing species. In the second
project, we will interrogate the functional role of the intermittent and heterogeneous activation of diverse
metabolic and stress response pathways which we have observed even in isogenic cells and in absence of
external cues. Specifically, we will test the hypothesis that heterogeneous sampling of such states may promote
inter-species interactions with bacterial partners evolved to coexist in the same environment. In this project, I
aim to uncover the phenotypic subpopulations arising in key species from human gut microbiota grown either
solo or in pair-wise combinations with other co-occurring species. With these data, we will use gene regulatory
network modeling to predict the higher-order interactions between gut microbiota species and engineer higher
complexity consortia with predictable behavioral traits. The results will pave the way toward building systems-
level understanding of the phenotypic structure and the emergent properties of a higher complexity natural
microbiota. Overall, the developed approaches will become widely applicable tools for microbiological research
and the acquired data will provide a foundation for high-resolution functional analyses of microbiota and biofilms.
项目摘要
细菌中的基因表达是异质的,即使在遗传上相同的细胞内,由于随机性,
许多基因调控程序的激活。由此产生的表型多样性往往起着重要的作用
细菌群落的功能作用,例如促进水平基因转移。这从根本
单细胞行为不能用群体水平测量来解决,到目前为止,已经在
使用基于低通量PCR的测定的遗传上易处理的生物体的纯培养物。但
自然界中的大多数细菌存在于空间上组织成生物膜的复杂微生物群落中,
由多个相互作用的成员组成。在这样的社区中,
嘈杂的基因表达状态和对异质微环境的反应的动态相互作用。
缺乏测量复杂多微生物群落内表型状态的方法
同时在系统规模和单细胞分辨率导致缺乏对
细菌生态学,因此是微生物学和微生物组研究领域的关键障碍。期间
我的博士后,我开发了一种高通量细菌单细胞转录组学技术,microSPLiT
(微生物分裂池连接转录组学),其允许测量数十个细胞中的基因表达状态。
成千上万的单个细胞只使用普通的实验室设备。在我的实验室里,我的目标是进一步扩展
microSPLiT用于生物膜的单细胞转录组学,以及复杂的细菌聚生体。具体到
我的第一个项目,我们将创建一个单细胞基因表达图的单和双物种的生物膜,
铜绿假单胞菌和金黄色葡萄球菌的空间单细胞RNA联合测序
和延时成像。我们将描述在哪里和如何出现专门的表型亚群
在生物膜发展的不同阶段,以及它们如何响应竞争物种而变化。在第二
项目,我们将询问的功能作用的间歇性和异质性激活的不同
代谢和应激反应途径,我们甚至在同基因细胞中观察到,
外部线索具体来说,我们将测试这样的假设,即异质抽样的国家可能会促进
与细菌伙伴的物种间相互作用进化为在同一环境中共存。在这个项目中,我
旨在发现来自人类肠道微生物群的关键物种中产生的表型亚群
单独或与其他共存物种成对组合。有了这些数据,我们将使用基因调控
网络建模,以预测肠道微生物群物种之间的高阶相互作用,
具有可预测行为特征的复杂性联盟。结果将为构建系统铺平道路-
水平的表型结构和更高的复杂性自然的涌现特性的理解
微生物群总的来说,开发的方法将成为微生物研究的广泛适用的工具
所获得的数据将为微生物群和生物膜的高分辨率功能分析提供基础。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Anna Kuchina其他文献
Anna Kuchina的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Anna Kuchina', 18)}}的其他基金
Resolving Oral Bacteria Interactions with a High-Throughput Low-Cost Single-Cell Transcriptomics Approach
采用高通量低成本单细胞转录组学方法解决口腔细菌相互作用
- 批准号:
10678379 - 财政年份:2023
- 资助金额:
$ 47万 - 项目类别:
相似国自然基金
greenwashing behavior in China:Basedon an integrated view of reconfiguration of environmental authority and decoupling logic
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
相似海外基金
Systematization of Cognitive Behavioral Therapy based on the influence of rule-governed behavior in frequent stealing behavior
基于规则行为对频繁偷盗行为的影响的认知行为治疗的系统化
- 批准号:
23K18975 - 财政年份:2023
- 资助金额:
$ 47万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Organizational Behavior Management in Various Welfare Facilities Starting with Behavioral Records
各类福利机构的组织行为管理从行为记录入手
- 批准号:
23K17566 - 财政年份:2023
- 资助金额:
$ 47万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
An Empirical Study on a Behavioral Model for Invoking the Potential Demand of Micro-Tourism through the Provision of Behavior Change Triggers
通过提供行为改变触发因素激发微旅游潜在需求的行为模型实证研究
- 批准号:
23K11632 - 财政年份:2023
- 资助金额:
$ 47万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of behavior modification approach using cognitive behavioral therapy for patients with higher brain dysfunction
使用认知行为疗法开发针对重度脑功能障碍患者的行为矫正方法
- 批准号:
23K02986 - 财政年份:2023
- 资助金额:
$ 47万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Combined Dialectical Behavior Therapy and Digital Cognitive Behavioral Therapy for Insomnia for Adolescents at High Risk for Suicide: A Pilot RCT
辩证行为疗法和数字认知行为疗法相结合治疗自杀高危青少年的失眠:一项试点随机对照试验
- 批准号:
10643478 - 财政年份:2023
- 资助金额:
$ 47万 - 项目类别:
The Effects of Scholarship on Student's Learning Behavior Focusing on PreferenceDevelopments and Expansions of Behavioral Economics Approach
奖学金对学生学习行为的影响关注偏好行为经济学方法的发展和扩展
- 批准号:
22K13722 - 财政年份:2022
- 资助金额:
$ 47万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Multisensory integration at the cell, circuit, and behavioral levels: How audiovisual signals drive dynamic courtship behavior in Drosophila melanogaster
细胞、回路和行为层面的多感觉整合:视听信号如何驱动果蝇的动态求偶行为
- 批准号:
10389197 - 财政年份:2022
- 资助金额:
$ 47万 - 项目类别:
Multisensory integration at the cell, circuit, and behavioral levels: How audiovisual signals drive dynamic courtship behavior in Drosophila melanogaster
细胞、回路和行为层面的多感觉整合:视听信号如何驱动果蝇的动态求偶行为
- 批准号:
10828249 - 财政年份:2022
- 资助金额:
$ 47万 - 项目类别:
Quantifying Behavioral Factors Related to Sedentary Behavior of Disabled Elderly
量化与残疾老年人久坐行为相关的行为因素
- 批准号:
22K21213 - 财政年份:2022
- 资助金额:
$ 47万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Construction of tsunami evacuation behavior database containing geographic characteristics and behavioral contexts and utilization of it for promoting residents' behavior to prepare for evacuation
构建包含地理特征和行为背景的海啸疏散行为数据库,并利用它来促进居民做好疏散准备的行为
- 批准号:
22K04641 - 财政年份:2022
- 资助金额:
$ 47万 - 项目类别:
Grant-in-Aid for Scientific Research (C)