Translating Molecular and Clinical Data to Biomarker-Informed Screening Pathway

将分子和临床数据转化为生物标志物知情的筛选途径

基本信息

  • 批准号:
    10716719
  • 负责人:
  • 金额:
    $ 66.29万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-08-01 至 2028-08-31
  • 项目状态:
    未结题

项目摘要

Project Summary Lung cancer remains to be a global public health priority. While low-dose computed tomography (LDCT) screening was shown to reduce lung cancer mortality by 20-30%, there remain to be unresolved challenges issues such as optimizing intervals for LDCT screening and how best to increase LDCT screening uptake and adherence. In addition, it has been shown previously that lung cancer risks for African Americans are higher than for Whites when having the same level of smoking exposure, while uptake of LDCT screening among African Americans has been one of the lowest. Moreover, the proportion of lung cancer among never smokers continues to rise across the world, particularly among Asians where over 50% of lung cancers are diagnosed among never smokers. None of these emerging issues are addressed under the recently expanded US Preventative Service Task Force criteria. The overall objective of this project is to establish a biomarker-informed LDCT screening pathway to maximize screening efficiency and benefit-harm ratio while accounting for racial disparity. Our research team is in the unique position to conduct this much-needed work as we have already established extensive resources for the data elements needed being the lead investigators of the major CT screening programs in the US, Canada, Europe and Asia along with international lung cancer consortia. Specifically, we will (i) Establish a biomarker-informed LDCT screening pathway accounting for racial disparity using data and samples from 3 ongoing LDCT screening programs in North America, with a total of 3500 participants and oversampling African Americans; (ii) Identify circulating biomarkers that predict lung cancer risk and differentiate nodule malignancy in Asian never smokers, using data and samples from the Taiwan Lung Cancer Screening for Never Smoker Trial (TALENT) with 12,011 high-risk Asian never smokers and 311 lung cancer cases detected by LDCT screening; (iii) Assess the prognostic values of biomarkers for lung cancer mortality based on multi-omics approaches using data and samples from 6 LDCT screening studies from US, Canada, Europe and Asia with a total of 1267 lung cancer cases. The results from this Project will shift the paradigm of what is considered an optimal CT screening pathway and address the need of under-represented populations and potential over-diagnosis by investigating mortality. It will provide necessary information toward the implementation of individual risk- profile based screening strategies that will increase efficiency, improve patient management, and reduce lung cancer mortality in an ethnically diverse population.
项目摘要 肺癌仍然是全球公共卫生的优先事项。而低剂量计算机断层扫描(LDCT) 筛查显示可以将肺癌死亡率降低20-30%,这一问题仍有待解决 挑战问题,如优化LDCT筛查间隔以及如何最好地提高LDCT 筛选摄取和依从性。此外,以前已经表明,肺癌的风险 在吸烟水平相同的情况下,非裔美国人的吸烟水平高于白人,而 非裔美国人接受LDCT筛查的比例一直是最低的之一。此外, 世界各地从不吸烟的人患肺癌的比例继续上升,特别是在 在亚洲,超过50%的肺癌是在从不吸烟的人中被诊断出来的。所有这些都不会出现 这些问题是在最近扩大的美国预防性服务工作组标准下解决的。 该项目的总体目标是建立一个生物标志物信息的LDCT筛查途径,以 最大限度地提高筛查效率和利害比,同时考虑种族差异。我们的研究 正如我们已经建立的那样,团队处于独特的地位来进行这项亟需的工作 作为主要CT的主要调查员所需的数据元素的广泛资源 美国、加拿大、欧洲和亚洲的筛查项目以及国际肺癌联盟。 具体地说,我们将(I)建立一个生物标志物信息的LDCT筛查途径,以说明 使用北美正在进行的3个LDCT筛查项目的数据和样本进行种族差异, 共有3500名参与者和过多抽样的非裔美国人;(2)查明正在传播的 预测亚洲人肺癌风险和鉴别结节恶性的生物标志物 吸烟者,使用台湾肺癌筛查从不吸烟试验的数据和样本 (人才)LDCT检测出12011名亚洲从不吸烟的高危人群和311例肺癌病例 筛查;(Iii)评估生物标记物对肺癌死亡率的预后价值 多组学方法使用来自美国、加拿大、 欧洲和亚洲共有1267例肺癌病例。 该项目的结果将改变被认为是最佳CT筛查的范式 途径和解决代表性不足人群的需求和潜在的过度诊断 调查死亡率。它将为实施个人风险提供必要的信息- 基于配置文件的筛查策略,将提高效率、改善患者管理并减少 不同种族人群中的肺癌死亡率。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Rayjean J. Hung其他文献

Erratum to: Hierarchical modeling identifies novel lung cancer susceptibility variants in inflammation pathways among 10,140 cases and 11,012 controls
  • DOI:
    10.1007/s00439-016-1692-4
  • 发表时间:
    2016-06-06
  • 期刊:
  • 影响因子:
    3.600
  • 作者:
    Darren R. Brenner;Paul Brennan;Paolo Boffetta;Christopher I. Amos;Margaret R. Spitz;Chu Chen;Gary Goodman;Joachim Heinrich;Heike Bickeböller;Albert Rosenberger;Angela Risch;Thomas Muley;John R. McLaughlin;Simone Benhamou;Christine Bouchardy;Juan Pablo Lewinger;John S. Witte;Gary Chen;Shelley Bull;Rayjean J. Hung
  • 通讯作者:
    Rayjean J. Hung
Genomic insights for personalised care in lung cancer and smoking cessation: motivating at-risk individuals toward evidence-based health practices
肺癌个性化治疗和戒烟的基因组学见解:激励高危个体采取基于证据的健康实践
  • DOI:
    10.1016/j.ebiom.2024.105441
  • 发表时间:
    2024-12-01
  • 期刊:
  • 影响因子:
    10.800
  • 作者:
    Tony Chen;Giang Pham;Louis Fox;Nina Adler;Xiaoyu Wang;Jingning Zhang;Jinyoung Byun;Younghun Han;Gretchen R.B. Saunders;Dajiang Liu;Michael J. Bray;Alex T. Ramsey;James McKay;Laura J. Bierut;Christopher I. Amos;Rayjean J. Hung;Xihong Lin;Haoyu Zhang;Li-Shiun Chen
  • 通讯作者:
    Li-Shiun Chen
Multi-ancestry GWAS meta-analyses of lung cancer reveal susceptibility loci and elucidate smoking-independent genetic risk
肺癌的多祖先全基因组关联研究荟萃分析揭示了易感位点并阐明了与吸烟无关的遗传风险
  • DOI:
    10.1038/s41467-024-52129-4
  • 发表时间:
    2024-10-04
  • 期刊:
  • 影响因子:
    15.700
  • 作者:
    Bryan R. Gorman;Sun-Gou Ji;Michael Francis;Anoop K. Sendamarai;Yunling Shi;Poornima Devineni;Uma Saxena;Elizabeth Partan;Andrea K. DeVito;Jinyoung Byun;Younghun Han;Xiangjun Xiao;Don D. Sin;Wim Timens;Jennifer Moser;Sumitra Muralidhar;Rachel Ramoni;Rayjean J. Hung;James D. McKay;Yohan Bossé;Ryan Sun;Christopher I. Amos;Saiju Pyarajan
  • 通讯作者:
    Saiju Pyarajan
The association between maternal depression and anxiety symptoms during pregnancy and child sleep patterns at age 3 years
孕期母亲抑郁和焦虑症状与 3 岁儿童睡眠模式之间的关联
  • DOI:
    10.1016/j.jad.2025.01.009
  • 发表时间:
    2025-04-01
  • 期刊:
  • 影响因子:
    4.900
  • 作者:
    Wagma Saad;Robyn Stremler;Catherine S. Birken;Julia A. Knight;Rayjean J. Hung;Stephen J. Lye;Stephen G. Matthews;Robert D. Levitan
  • 通讯作者:
    Robert D. Levitan
Protein Biomarkers in Lung Cancer Screening: Technical Considerations and Feasibility Assessment
  • DOI:
    10.1016/j.arbres.2024.07.007
  • 发表时间:
    2024-10-01
  • 期刊:
  • 影响因子:
  • 作者:
    Daniel Orive;Mirari Echepare;Franco Bernasconi-Bisio;Miguel Fernández Sanmamed;Antonio Pineda-Lucena;Carlos de la Calle-Arroyo;Frank Detterbeck;Rayjean J. Hung;Mattias Johansson;Hilary A. Robbins;Luis M. Seijo;Luis M. Montuenga;Karmele Valencia
  • 通讯作者:
    Karmele Valencia

Rayjean J. Hung的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Rayjean J. Hung', 18)}}的其他基金

Translating Molecular and Clinical Data to Population Lung Cancer Risk Assessment
将分子和临床数据转化为人群肺癌风险评估
  • 批准号:
    10374815
  • 财政年份:
    2017
  • 资助金额:
    $ 66.29万
  • 项目类别:
Translating Molecular and Clinical Data to Population Lung Cancer Risk Assessment
将分子和临床数据转化为人群肺癌风险评估
  • 批准号:
    9657412
  • 财政年份:
  • 资助金额:
    $ 66.29万
  • 项目类别:
Translating Molecular and Clinical Data to Population Lung Cancer Risk Assessment
将分子和临床数据转化为人群肺癌风险评估
  • 批准号:
    9518758
  • 财政年份:
  • 资助金额:
    $ 66.29万
  • 项目类别:

相似海外基金

Unraveling the Dynamics of International Accounting: Exploring the Impact of IFRS Adoption on Firms' Financial Reporting and Business Strategies
揭示国际会计的动态:探索采用 IFRS 对公司财务报告和业务战略的影响
  • 批准号:
    24K16488
  • 财政年份:
    2024
  • 资助金额:
    $ 66.29万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Mighty Accounting - Accountancy Automation for 1-person limited companies.
Mighty Accounting - 1 人有限公司的会计自动化。
  • 批准号:
    10100360
  • 财政年份:
    2024
  • 资助金额:
    $ 66.29万
  • 项目类别:
    Collaborative R&D
Accounting for the Fall of Silver? Western exchange banking practice, 1870-1910
白银下跌的原因是什么?
  • 批准号:
    24K04974
  • 财政年份:
    2024
  • 资助金额:
    $ 66.29万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
A New Direction in Accounting Education for IT Human Resources
IT人力资源会计教育的新方向
  • 批准号:
    23K01686
  • 财政年份:
    2023
  • 资助金额:
    $ 66.29万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
An empirical and theoretical study of the double-accounting system in 19th-century American and British public utility companies
19世纪美国和英国公用事业公司双重会计制度的实证和理论研究
  • 批准号:
    23K01692
  • 财政年份:
    2023
  • 资助金额:
    $ 66.29万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
An Empirical Analysis of the Value Effect: An Accounting Viewpoint
价值效应的实证分析:会计观点
  • 批准号:
    23K01695
  • 财政年份:
    2023
  • 资助金额:
    $ 66.29万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Accounting model for improving performance on the health and productivity management
提高健康和生产力管理绩效的会计模型
  • 批准号:
    23K01713
  • 财政年份:
    2023
  • 资助金额:
    $ 66.29万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
CPS: Medium: Making Every Drop Count: Accounting for Spatiotemporal Variability of Water Needs for Proactive Scheduling of Variable Rate Irrigation Systems
CPS:中:让每一滴水都发挥作用:考虑用水需求的时空变化,主动调度可变速率灌溉系统
  • 批准号:
    2312319
  • 财政年份:
    2023
  • 资助金额:
    $ 66.29万
  • 项目类别:
    Standard Grant
New Role of Not-for-Profit Entities and Their Accounting Standards to Be Unified
非营利实体的新角色及其会计准则将统一
  • 批准号:
    23K01715
  • 财政年份:
    2023
  • 资助金额:
    $ 66.29万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Improving Age- and Cause-Specific Under-Five Mortality Rates (ACSU5MR) by Systematically Accounting Measurement Errors to Inform Child Survival Decision Making in Low Income Countries
通过系统地核算测量误差来改善特定年龄和特定原因的五岁以下死亡率 (ACSU5MR),为低收入国家的儿童生存决策提供信息
  • 批准号:
    10585388
  • 财政年份:
    2023
  • 资助金额:
    $ 66.29万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了