Translating Molecular and Clinical Data to Population Lung Cancer Risk Assessment

将分子和临床数据转化为人群肺癌风险评估

基本信息

  • 批准号:
    9518758
  • 负责人:
  • 金额:
    $ 49.16万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
  • 资助国家:
    美国
  • 起止时间:
  • 项目状态:
    未结题

项目摘要

Project Summary Lung cancer continues to be the most common cancer and reduction of lung cancer related death is a global priority. The National Lung Screening Trial (NLST) reported that the low-dose computed tomography (LDCT) screening reduced the lung cancer mortality by 20%, with a trade-off of more than 95% of false positive results. This underlined our need for a much improved risk prediction model and higher screening efficiency to balance the benefits and potential harms. Although there have been substantial efforts in establishing lung cancer risk prediction models, none have taken all aspects into account and the joint performance of all predictors remains unknown. For those with CT nodules, currently there is a wide range of clinical protocols on how they are managed, from watchful waiting to invasive diagnostic procedures. With the usage of LDCT scans rapidly growing following the NLST report, there is an urgent need to address the issues of (i) who should be recommended for screening and (ii) what to do when a nodule is found. Our research team is in the unique position to conduct this much needed work as we have already established extensive resources for the data elements needed being the lead investigators of the three lung cancer consortia (International Lung Cancer Consortium, Transdisciplinary Research in Cancer of Lung, and Lung Cancer Cohort Consortium), and have established collaborations with the lung cancer CT screening programs in the US, Canada and Europe. The overall goal of this project is to translate the epidemiological, molecular and clinical data into lung cancer risk assessment and to improve nodule assessment. Specifically, we will (i) establish an integrated risk prediction model to identify individuals at high risk of lung cancer, combining personal health and exposure history, targeted molecular and genomic profile and lung function data based lung cancer CT screening populations in US, Canada and Europe based on a total of 950 CT-detected lung cancer patients from cohorts of 46,057 screening individuals; and (ii) establish a comprehensive nodule assessment models for individuals with LDCT-detected non-calcified pulmonary nodules based on both 2 dimensional-based and 3D volume and radiomics-based probability models. We will compare the model performance with the existing classification system such as Lung-RADS and conduct net benefit and decision curve analysis to assess their clinical usefulness. These models will be very valuable for the general public, clinicians, researchers and health administrators. It will increase the efficiency of lung cancer LDCT screening, and reduce unnecessary workup (and patient anxiety) for those who were found to have LDCT-detected pulmonary non-calcified nodules. The impact of this project will be wide-spread in our community.
项目摘要 肺癌仍然是最常见的癌症,减少肺癌相关死亡是最重要的。 全球优先。国家肺筛查试验(NLST)报告说, 断层扫描(LDCT)筛查降低肺癌死亡率20%, 95%以上的假阳性结果。这突出表明我们需要大大改进风险预测 模型和更高的筛选效率,以平衡获益和潜在危害。虽然 在建立肺癌风险预测模型方面已经做了大量的努力,但没有一个人采取了所有 考虑到各个方面,所有预测因素的联合表现仍然未知。者 CT结节,目前有广泛的临床协议,如何管理,从 警惕地等待侵入性诊断程序。随着LDCT扫描的使用快速增长 在NLST报告之后,迫切需要解决以下问题:(i)谁应该 建议进行筛查和(ii)当发现结节时该怎么办。我们的研究团队 在进行这项急需的工作,因为我们已经建立了广泛的 作为三种肺癌的主要研究者, 国际肺癌联合会(International Lung Cancer Consortia) Lung和肺癌队列联盟),并与肺 美国、加拿大和欧洲的癌症CT筛查项目。该项目的总体目标是 将流行病学、分子和临床数据转化为肺癌风险评估, 改进结核评估。具体而言,我们将(i)建立综合风险预测模型 结合个人健康状况和接触史, 基于靶向分子和基因组谱及肺功能数据的肺癌CT筛查 美国、加拿大和欧洲的人群,基于总计950例CT检测的肺癌患者 来自46,057名筛查个体的队列;以及(ii)建立全面的结节 LDCT检测到非钙化肺结节的个体的评估模型, 基于2维和3D体积和基于放射学的概率模型。我们将比较 模型性能与现有的分类系统,如肺RADS和导管网 效益和决策曲线分析,以评估其临床实用性。这些模型将非常 对公众、临床医生、研究人员和卫生管理人员都很有价值。会增加 肺癌LDCT筛查的效率,并减少不必要的检查(和患者焦虑), LDCT检查发现肺内非钙化结节者。这样做的影响 该项目将在我们的社区广泛传播。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Rayjean J. Hung其他文献

Erratum to: Hierarchical modeling identifies novel lung cancer susceptibility variants in inflammation pathways among 10,140 cases and 11,012 controls
  • DOI:
    10.1007/s00439-016-1692-4
  • 发表时间:
    2016-06-06
  • 期刊:
  • 影响因子:
    3.600
  • 作者:
    Darren R. Brenner;Paul Brennan;Paolo Boffetta;Christopher I. Amos;Margaret R. Spitz;Chu Chen;Gary Goodman;Joachim Heinrich;Heike Bickeböller;Albert Rosenberger;Angela Risch;Thomas Muley;John R. McLaughlin;Simone Benhamou;Christine Bouchardy;Juan Pablo Lewinger;John S. Witte;Gary Chen;Shelley Bull;Rayjean J. Hung
  • 通讯作者:
    Rayjean J. Hung
Genomic insights for personalised care in lung cancer and smoking cessation: motivating at-risk individuals toward evidence-based health practices
肺癌个性化治疗和戒烟的基因组学见解:激励高危个体采取基于证据的健康实践
  • DOI:
    10.1016/j.ebiom.2024.105441
  • 发表时间:
    2024-12-01
  • 期刊:
  • 影响因子:
    10.800
  • 作者:
    Tony Chen;Giang Pham;Louis Fox;Nina Adler;Xiaoyu Wang;Jingning Zhang;Jinyoung Byun;Younghun Han;Gretchen R.B. Saunders;Dajiang Liu;Michael J. Bray;Alex T. Ramsey;James McKay;Laura J. Bierut;Christopher I. Amos;Rayjean J. Hung;Xihong Lin;Haoyu Zhang;Li-Shiun Chen
  • 通讯作者:
    Li-Shiun Chen
Multi-ancestry GWAS meta-analyses of lung cancer reveal susceptibility loci and elucidate smoking-independent genetic risk
肺癌的多祖先全基因组关联研究荟萃分析揭示了易感位点并阐明了与吸烟无关的遗传风险
  • DOI:
    10.1038/s41467-024-52129-4
  • 发表时间:
    2024-10-04
  • 期刊:
  • 影响因子:
    15.700
  • 作者:
    Bryan R. Gorman;Sun-Gou Ji;Michael Francis;Anoop K. Sendamarai;Yunling Shi;Poornima Devineni;Uma Saxena;Elizabeth Partan;Andrea K. DeVito;Jinyoung Byun;Younghun Han;Xiangjun Xiao;Don D. Sin;Wim Timens;Jennifer Moser;Sumitra Muralidhar;Rachel Ramoni;Rayjean J. Hung;James D. McKay;Yohan Bossé;Ryan Sun;Christopher I. Amos;Saiju Pyarajan
  • 通讯作者:
    Saiju Pyarajan
The association between maternal depression and anxiety symptoms during pregnancy and child sleep patterns at age 3 years
孕期母亲抑郁和焦虑症状与 3 岁儿童睡眠模式之间的关联
  • DOI:
    10.1016/j.jad.2025.01.009
  • 发表时间:
    2025-04-01
  • 期刊:
  • 影响因子:
    4.900
  • 作者:
    Wagma Saad;Robyn Stremler;Catherine S. Birken;Julia A. Knight;Rayjean J. Hung;Stephen J. Lye;Stephen G. Matthews;Robert D. Levitan
  • 通讯作者:
    Robert D. Levitan
Protein Biomarkers in Lung Cancer Screening: Technical Considerations and Feasibility Assessment
  • DOI:
    10.1016/j.arbres.2024.07.007
  • 发表时间:
    2024-10-01
  • 期刊:
  • 影响因子:
  • 作者:
    Daniel Orive;Mirari Echepare;Franco Bernasconi-Bisio;Miguel Fernández Sanmamed;Antonio Pineda-Lucena;Carlos de la Calle-Arroyo;Frank Detterbeck;Rayjean J. Hung;Mattias Johansson;Hilary A. Robbins;Luis M. Seijo;Luis M. Montuenga;Karmele Valencia
  • 通讯作者:
    Karmele Valencia

Rayjean J. Hung的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Rayjean J. Hung', 18)}}的其他基金

Translating Molecular and Clinical Data to Biomarker-Informed Screening Pathway
将分子和临床数据转化为生物标志物知情的筛选途径
  • 批准号:
    10716719
  • 财政年份:
    2017
  • 资助金额:
    $ 49.16万
  • 项目类别:
Translating Molecular and Clinical Data to Population Lung Cancer Risk Assessment
将分子和临床数据转化为人群肺癌风险评估
  • 批准号:
    10374815
  • 财政年份:
    2017
  • 资助金额:
    $ 49.16万
  • 项目类别:
Translating Molecular and Clinical Data to Population Lung Cancer Risk Assessment
将分子和临床数据转化为人群肺癌风险评估
  • 批准号:
    9657412
  • 财政年份:
  • 资助金额:
    $ 49.16万
  • 项目类别:

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 49.16万
  • 项目类别:
    Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 49.16万
  • 项目类别:
    Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    $ 49.16万
  • 项目类别:
    Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 49.16万
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 49.16万
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 49.16万
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 49.16万
  • 项目类别:
    EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 49.16万
  • 项目类别:
    Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 49.16万
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 49.16万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了