Translating Molecular and Clinical Data to Population Lung Cancer Risk Assessment
将分子和临床数据转化为人群肺癌风险评估
基本信息
- 批准号:9657412
- 负责人:
- 金额:$ 49.49万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:
- 资助国家:美国
- 起止时间:至
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Project Summary
Lung cancer continues to be the most common cancer and reduction of lung cancer related death is
a global priority. The National Lung Screening Trial (NLST) reported that the low-dose computed
tomography (LDCT) screening reduced the lung cancer mortality by 20%, with a trade-off of more
than 95% of false positive results. This underlined our need for a much improved risk prediction
model and higher screening efficiency to balance the benefits and potential harms. Although there
have been substantial efforts in establishing lung cancer risk prediction models, none have taken all
aspects into account and the joint performance of all predictors remains unknown. For those with
CT nodules, currently there is a wide range of clinical protocols on how they are managed, from
watchful waiting to invasive diagnostic procedures. With the usage of LDCT scans rapidly growing
following the NLST report, there is an urgent need to address the issues of (i) who should be
recommended for screening and (ii) what to do when a nodule is found. Our research team is
in the unique position to conduct this much needed work as we have already established extensive
resources for the data elements needed being the lead investigators of the three lung cancer
consortia (International Lung Cancer Consortium, Transdisciplinary Research in Cancer of
Lung, and Lung Cancer Cohort Consortium), and have established collaborations with the lung
cancer CT screening programs in the US, Canada and Europe. The overall goal of this project is to
translate the epidemiological, molecular and clinical data into lung cancer risk assessment and to
improve nodule assessment. Specifically, we will (i) establish an integrated risk prediction model
to identify individuals at high risk of lung cancer, combining personal health and exposure history,
targeted molecular and genomic profile and lung function data based lung cancer CT screening
populations in US, Canada and Europe based on a total of 950 CT-detected lung cancer patients
from cohorts of 46,057 screening individuals; and (ii) establish a comprehensive nodule
assessment models for individuals with LDCT-detected non-calcified pulmonary nodules based on
both 2 dimensional-based and 3D volume and radiomics-based probability models. We will compare
the model performance with the existing classification system such as Lung-RADS and conduct net
benefit and decision curve analysis to assess their clinical usefulness. These models will be very
valuable for the general public, clinicians, researchers and health administrators. It will increase the
efficiency of lung cancer LDCT screening, and reduce unnecessary workup (and patient anxiety) for
those who were found to have LDCT-detected pulmonary non-calcified nodules. The impact of this
project will be wide-spread in our community.
项目摘要
肺癌仍然是最常见的癌症,减少与肺癌相关的死亡
这是全球的优先事项。国家肺部筛查试验(NLST)报告称,低剂量计算机
断层扫描(LDCT)筛查将肺癌死亡率降低了20%,但代价更大
95%以上的假阳性结果。这突显了我们需要更好的风险预测
模型和更高的筛选效率,以平衡好处和潜在的危害。尽管在那里
在建立肺癌风险预测模型方面做出了大量努力,但没有一个人全盘接受
考虑到各方面的因素,所有预测者的联合表现仍不得而知。对于那些拥有
CT结节,目前有各种各样的临床方案来处理它们,从
警惕地等待着侵入性的诊断程序。随着LDCT扫描的使用迅速增长
在NLST报告之后,迫切需要解决以下问题:(1)谁应该
建议进行筛查,以及(2)发现结节时应如何处理。我们的研究团队是
以独特的地位进行这项亟需的工作,因为我们已经建立了广泛的
作为三种肺癌主要调查人员所需的数据元素的资源
国际肺癌联合会,癌症跨学科研究
和肺癌队列联盟),并与肺组织建立了合作关系
美国、加拿大和欧洲的癌症CT筛查计划。这个项目的总体目标是
将流行病学、分子和临床数据转化为肺癌风险评估,并
改进结节评估。具体地说,我们将(一)建立综合风险预测模型
结合个人健康和接触史,确定肺癌高危人群,
靶向分子和基因组图谱及肺功能数据在肺癌CT筛查中的应用
基于总共950名CT检测的肺癌患者的美国、加拿大和欧洲的人口
从46,057名筛查个人中选出;和(2)建立一个全面的结核
基于LDCT检出非钙化肺结节的个体评估模型
基于二维和三维体积和放射组学的概率模型。我们会比较一下
模型的性能与现有的分类系统,如肺-RADS和行为网
效益和决策曲线分析,以评估其临床有效性。这些模型将非常
对普通公众、临床医生、研究人员和卫生管理人员具有重要价值。这将增加
肺癌LDCT筛查的效率,并减少不必要的工作(和患者焦虑)
LDCT检查发现肺内无钙化结节的患者。这件事的影响
该项目将在我们的社区广泛传播。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rayjean J. Hung其他文献
Erratum to: Hierarchical modeling identifies novel lung cancer susceptibility variants in inflammation pathways among 10,140 cases and 11,012 controls
- DOI:
10.1007/s00439-016-1692-4 - 发表时间:
2016-06-06 - 期刊:
- 影响因子:3.600
- 作者:
Darren R. Brenner;Paul Brennan;Paolo Boffetta;Christopher I. Amos;Margaret R. Spitz;Chu Chen;Gary Goodman;Joachim Heinrich;Heike Bickeböller;Albert Rosenberger;Angela Risch;Thomas Muley;John R. McLaughlin;Simone Benhamou;Christine Bouchardy;Juan Pablo Lewinger;John S. Witte;Gary Chen;Shelley Bull;Rayjean J. Hung - 通讯作者:
Rayjean J. Hung
Genomic insights for personalised care in lung cancer and smoking cessation: motivating at-risk individuals toward evidence-based health practices
肺癌个性化治疗和戒烟的基因组学见解:激励高危个体采取基于证据的健康实践
- DOI:
10.1016/j.ebiom.2024.105441 - 发表时间:
2024-12-01 - 期刊:
- 影响因子:10.800
- 作者:
Tony Chen;Giang Pham;Louis Fox;Nina Adler;Xiaoyu Wang;Jingning Zhang;Jinyoung Byun;Younghun Han;Gretchen R.B. Saunders;Dajiang Liu;Michael J. Bray;Alex T. Ramsey;James McKay;Laura J. Bierut;Christopher I. Amos;Rayjean J. Hung;Xihong Lin;Haoyu Zhang;Li-Shiun Chen - 通讯作者:
Li-Shiun Chen
Multi-ancestry GWAS meta-analyses of lung cancer reveal susceptibility loci and elucidate smoking-independent genetic risk
肺癌的多祖先全基因组关联研究荟萃分析揭示了易感位点并阐明了与吸烟无关的遗传风险
- DOI:
10.1038/s41467-024-52129-4 - 发表时间:
2024-10-04 - 期刊:
- 影响因子:15.700
- 作者:
Bryan R. Gorman;Sun-Gou Ji;Michael Francis;Anoop K. Sendamarai;Yunling Shi;Poornima Devineni;Uma Saxena;Elizabeth Partan;Andrea K. DeVito;Jinyoung Byun;Younghun Han;Xiangjun Xiao;Don D. Sin;Wim Timens;Jennifer Moser;Sumitra Muralidhar;Rachel Ramoni;Rayjean J. Hung;James D. McKay;Yohan Bossé;Ryan Sun;Christopher I. Amos;Saiju Pyarajan - 通讯作者:
Saiju Pyarajan
The association between maternal depression and anxiety symptoms during pregnancy and child sleep patterns at age 3 years
孕期母亲抑郁和焦虑症状与 3 岁儿童睡眠模式之间的关联
- DOI:
10.1016/j.jad.2025.01.009 - 发表时间:
2025-04-01 - 期刊:
- 影响因子:4.900
- 作者:
Wagma Saad;Robyn Stremler;Catherine S. Birken;Julia A. Knight;Rayjean J. Hung;Stephen J. Lye;Stephen G. Matthews;Robert D. Levitan - 通讯作者:
Robert D. Levitan
Protein Biomarkers in Lung Cancer Screening: Technical Considerations and Feasibility Assessment
- DOI:
10.1016/j.arbres.2024.07.007 - 发表时间:
2024-10-01 - 期刊:
- 影响因子:
- 作者:
Daniel Orive;Mirari Echepare;Franco Bernasconi-Bisio;Miguel Fernández Sanmamed;Antonio Pineda-Lucena;Carlos de la Calle-Arroyo;Frank Detterbeck;Rayjean J. Hung;Mattias Johansson;Hilary A. Robbins;Luis M. Seijo;Luis M. Montuenga;Karmele Valencia - 通讯作者:
Karmele Valencia
Rayjean J. Hung的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rayjean J. Hung', 18)}}的其他基金
Translating Molecular and Clinical Data to Biomarker-Informed Screening Pathway
将分子和临床数据转化为生物标志物知情的筛选途径
- 批准号:
10716719 - 财政年份:2017
- 资助金额:
$ 49.49万 - 项目类别:
Translating Molecular and Clinical Data to Population Lung Cancer Risk Assessment
将分子和临床数据转化为人群肺癌风险评估
- 批准号:
10374815 - 财政年份:2017
- 资助金额:
$ 49.49万 - 项目类别:
Translating Molecular and Clinical Data to Population Lung Cancer Risk Assessment
将分子和临床数据转化为人群肺癌风险评估
- 批准号:
9518758 - 财政年份:
- 资助金额:
$ 49.49万 - 项目类别:
相似国自然基金
Kidney injury molecular(KIM-1)介导肾小管上皮细胞自噬在糖尿病肾病肾间质纤维化中的作用
- 批准号:81300605
- 批准年份:2013
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
Molecular Plant
- 批准号:31224801
- 批准年份:2012
- 资助金额:20.0 万元
- 项目类别:专项基金项目
Molecular Interaction Reconstruction of Rheumatoid Arthritis Therapies Using Clinical Data
- 批准号:31070748
- 批准年份:2010
- 资助金额:34.0 万元
- 项目类别:面上项目
Molecular Plant
- 批准号:31024802
- 批准年份:2010
- 资助金额:20.0 万元
- 项目类别:专项基金项目
Cellular & Molecular Immunology
- 批准号:30824806
- 批准年份:2008
- 资助金额:20.0 万元
- 项目类别:专项基金项目
相似海外基金
Search for damage-associated molecular patterns (DAMPs) derived from cochlear hair cells and its clinical application
耳蜗毛细胞损伤相关分子模式(DAMPs)的探索及其临床应用
- 批准号:
23K08924 - 财政年份:2023
- 资助金额:
$ 49.49万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Clinical, molecular, and immune characterization of naturally occurring osteosarcoma in dogs
犬自然发生的骨肉瘤的临床、分子和免疫特征
- 批准号:
10717426 - 财政年份:2023
- 资助金额:
$ 49.49万 - 项目类别:
Clinical application based on the molecular mechanism of autoantibody production in autoimmunity
基于自身抗体产生的分子机制在自身免疫中的临床应用
- 批准号:
23K18361 - 财政年份:2023
- 资助金额:
$ 49.49万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Accelerating drug repurposing for rare neurological, neurometabolic and neuromuscular disorders by exploiting SIMilarities in clinical and molecular PATHology
利用临床和分子病理学的相似性,加速罕见神经系统、神经代谢和神经肌肉疾病的药物再利用
- 批准号:
10077172 - 财政年份:2023
- 资助金额:
$ 49.49万 - 项目类别:
EU-Funded
Pediatric brain tumors: Improving survival through integration of clinical molecular diagnostics and biologically targeted therapies into clinical trials
儿科脑肿瘤:通过将临床分子诊断和生物靶向治疗整合到临床试验中来提高生存率
- 批准号:
10563032 - 财政年份:2023
- 资助金额:
$ 49.49万 - 项目类别:
SBIR Phase I: Microdissection Optimization for Molecular Profiling and Clinical Lab Use
SBIR 第一阶段:分子分析和临床实验室使用的显微切割优化
- 批准号:
2322010 - 财政年份:2023
- 资助金额:
$ 49.49万 - 项目类别:
Standard Grant
Clinical and Molecular based prognostic factors for Venous Thromboembolism (VTE) in Children with Sickle Cell Disease
镰状细胞病儿童静脉血栓栓塞 (VTE) 的临床和分子预后因素
- 批准号:
10739524 - 财政年份:2023
- 资助金额:
$ 49.49万 - 项目类别:
Elucidation of the molecular mechanism of activated B cells in the pathogenesis of hypersensitivity pneumonitis and its clinical significance.
阐明活化B细胞在过敏性肺炎发病中的分子机制及其临床意义。
- 批准号:
23K07622 - 财政年份:2023
- 资助金额:
$ 49.49万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Supplement Proposal-A Pediatric Clinical Center for Molecular Transducers of Physical Activity (MoTrPAC): Towards a Molecular Map of Exercise in the Pediatric Origins of Health Across the Lifespan
补充提案-体力活动分子传感器儿科临床中心 (MoTrPAC):构建儿科全生命周期健康起源的运动分子图谱
- 批准号:
10894540 - 财政年份:2023
- 资助金额:
$ 49.49万 - 项目类别:
Molecular approaches in pre-clinical models to identify and validate biomarker signatures that predict treatment response in prostate cancer patients
临床前模型中的分子方法,用于识别和验证预测前列腺癌患者治疗反应的生物标志物特征
- 批准号:
2754541 - 财政年份:2022
- 资助金额:
$ 49.49万 - 项目类别:
Studentship