Mixed Effects Modeling of Microarrays Using the S-score
使用 S 分数对微阵列进行混合效应建模
基本信息
- 批准号:7272023
- 负责人:
- 金额:$ 2.78万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2005
- 资助国家:美国
- 起止时间:2005-08-01 至 2008-07-31
- 项目状态:已结题
- 来源:
- 关键词:AlgorithmsAutomobile DrivingBrain regionCodeComputer softwareEnvironmentGene ExpressionGenesGoalsLanguageLeadMeasurementMeasuresMentorsMethodsModelingOligonucleotide MicroarraysPopulationRelative (related person)SamplingScoreSensitivity and SpecificitySignal TransductionSoftware ToolsStructureSumTechniquesTissue-Specific Gene ExpressionTrainingbasedesigninnovationopen sourceprogramsresearch studyvalidation studies
项目摘要
DESCRIPTION: The goal of this training proposal is to design, implement, and validate a mixed effects model extension of the S-score algorithm (Zhang et al., J Mol Biol, 2001) for oligonucleotide microarrays. The S-score was originally developed to provide alternatives to existing software for measuring differential gene expression. It is based on an error model in which the detected signal is proportional to the probe pair signal for highly expressed genes, but approaches a background level (rather than 0) for low levels of expression. This model is used to calculate a relative change in probe pair intensities that converts probe signals into multiple measurements with equalized errors, which are summed to form the S-score. Validation studies confirmed that the S-score outperformed many other methods. However, improvements on the S-score may be realized by extending it to a more general model capable of handling more than two samples and mixed effects in the predictor variables. The use of a mixed effects model more closely describes microarray studies, where certain factors represent a subset of the population being studied. Such a model captures the correlation structure of microarray experiments more accurately and offers greater power in detecting gene expression changes. Under his mentors, the PI will develop a mixed effects model extension and corresponding software algorithms in the R language. This will lead to the creation and widespread distribution of a software algorithm incorporating the latest innovations in gene expression analysis.
描述:本培训提案的目标是设计、实施和验证寡核苷酸微阵列的 S 评分算法(Zhang 等人,J Mol Biol,2001)的混合效应模型扩展。 S-score 最初开发的目的是为测量差异基因表达的现有软件提供替代方案。它基于一个误差模型,其中检测到的信号与高表达基因的探针对信号成正比,但对于低表达水平则接近背景水平(而不是 0)。该模型用于计算探针对强度的相对变化,将探针信号转换为具有均衡误差的多个测量值,这些测量值相加形成 S 分数。验证研究证实,S 分数优于许多其他方法。然而,S 分数的改进可以通过将其扩展到能够处理两个以上样本和预测变量中的混合效应的更通用模型来实现。混合效应模型的使用更贴切地描述了微阵列研究,其中某些因素代表了所研究人群的子集。这种模型可以更准确地捕获微阵列实验的相关结构,并为检测基因表达变化提供更大的能力。在他的指导下,PI 将用 R 语言开发混合效应模型扩展和相应的软件算法。这将导致结合基因表达分析最新创新的软件算法的创建和广泛分发。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
RICHARD E KENNEDY其他文献
RICHARD E KENNEDY的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('RICHARD E KENNEDY', 18)}}的其他基金
Automating Delirium Identification and Risk Prediction in Electronic Health Records (Supplement)
电子健康记录中谵妄的自动化识别和风险预测(补充)
- 批准号:
10410694 - 财政年份:2019
- 资助金额:
$ 2.78万 - 项目类别:
Automating Delirium Identification and Risk Prediction in Electronic Health Records
电子健康记录中谵妄的自动化识别和风险预测
- 批准号:
10341053 - 财政年份:2019
- 资助金额:
$ 2.78万 - 项目类别:
Automating Delirium Identification and Risk Prediction in Electronic Health Records
电子健康记录中谵妄的自动化识别和风险预测
- 批准号:
10091381 - 财政年份:2019
- 资助金额:
$ 2.78万 - 项目类别:
In Silico Screening of Medications for Slowing Alzheimer's Disease Progression.
减缓阿尔茨海默病进展药物的计算机筛选。
- 批准号:
9884696 - 财政年份:2017
- 资助金额:
$ 2.78万 - 项目类别:
Mixed Effects Modeling of Microarrays Using the S-score
使用 S 分数对微阵列进行混合效应建模
- 批准号:
6935669 - 财政年份:2005
- 资助金额:
$ 2.78万 - 项目类别:
Mixed Effects Modeling of Microarrays Using the S-score
使用 S 分数对微阵列进行混合效应建模
- 批准号:
7121993 - 财政年份:2005
- 资助金额:
$ 2.78万 - 项目类别:
相似海外基金
Establishment of a method for evaluating automobile driving ability focusing on frontal lobe functions and its application to accident prediction
以额叶功能为中心的汽车驾驶能力评价方法的建立及其在事故预测中的应用
- 批准号:
20K07947 - 财政年份:2020
- 资助金额:
$ 2.78万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Evaluation of the Effectiveness of Multi-Professional Collaborative Assessment of Cognitive Function and Automobile Driving Skills and Comprehensive Support
认知功能与汽车驾驶技能多专业协同评估效果评价及综合支持
- 批准号:
17K19824 - 财政年份:2017
- 资助金额:
$ 2.78万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Development of Flexible Automobile Driving Interface for Disabled People
残疾人灵活汽车驾驶界面开发
- 批准号:
25330237 - 财政年份:2013
- 资助金额:
$ 2.78万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Automobile driving among older people with dementia: the effect of an intervention using a support manual for family caregivers
患有痴呆症的老年人的汽车驾驶:使用家庭护理人员支持手册进行干预的效果
- 批准号:
23591741 - 财政年份:2011
- 资助金额:
$ 2.78万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




