Automating Delirium Identification and Risk Prediction in Electronic Health Records
电子健康记录中谵妄的自动化识别和风险预测
基本信息
- 批准号:10341053
- 负责人:
- 金额:$ 37.69万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-02-15 至 2024-12-31
- 项目状态:已结题
- 来源:
- 关键词:AcuteAddressAdultAffectAgreementAlabamaAlgorithmsAllyAssessment toolAutomationCaringCharacteristicsClinical ResearchCognitionCognitiveComputational algorithmConfusionConsensusDataData AnalysesData SetDeliriumDescriptorDetectionDevelopmentDiagnostic testsDiscipline of NursingDiseaseElderlyElectronic Health RecordEpidemiologyFoundationsGrowthHealth systemHospitalsImpaired cognitionIndividualInpatientsInstitutesInstitutionalizationLaboratoriesLinkLogisticsLong-Term Care for ElderlyMachine LearningMeasurableMedicalMethodsModelingMonitorNatural Language ProcessingNursesNursing StaffOperative Surgical ProceduresPatientsPatternPattern RecognitionPersonsPreventionPropertyProviderROC CurveReference StandardsResearchResourcesRiskRisk FactorsSample SizeSamplingSigns and SymptomsTestingTextTimeTrainingUniversitiesValidationacute careadverse outcomebasecare costsconfusion assessment methoddata miningepidemiology studyfunctional declinefunctional disabilityhealth care settingshigh dimensionalityhuman old age (65+)improvedinstrumentinterestlarge scale datamodel developmentmortality risknovelnovel strategiespatient stratificationphrasesprediction algorithmprogramsrisk predictionrisk prediction modelscreeningvalidation studiesvirtualward
项目摘要
Abstract. Delirium, or acute confusional state, affects 30-40% of hospitalized older adults, with the added cost
of care estimated to be up to $7 billion. Although originally conceptualized as a transient disorder, delirium is now
recognized to have significant consequences, including increased risk of death, functional decline, and long-term
cognitive impairment. As up to 75% cases are not recognized by providers, there is an urgent need for additional
methods to identify delirium for clinical and research purposes, and to stratify patients based on delirium risk. In
this proposal, we present a novel approach to the identification of delirium based on large-scale data mining (i.e.,
pattern recognition) algorithms using machine learning and natural language processing applied to electronic
health record (EHR) data, which will automate chart-based determination of delirium status and risk prediction.
We will combine these algorithms with data collected through our recently implemented Virtual Acute Care for
Elders (ACE) quality improvement project, which institutes delirium screening once per shift by nursing staff for
all individuals over age 65 admitted to the University of Alabama at Birmingham (UAB) Hospital. This unprece-
dented volume of data will allow us to achieve the necessary sample sizes for effective training and validation of
our data mining algorithms. Data mining algorithms that discover patterns of associations in data, rather than
testing predetermined hypotheses, are well suited to application in large-scale algorithms for identification of
delirium. Using our Virtual ACE and hospital EHR data, we will be able to evaluate more than 10,000 individual
features (e.g., text words and phrases, laboratory and other diagnostic tests, concurrent medical conditions) as-
sociated with delirium, which will be classified as risk factors for delirium, as signs, symptoms, and descriptors
of delirium itself, and as complications and consequences of delirium, based on expert consensus. We will then
use these features to develop rules for identification of delirium in the EHR, as well as risk prediction models that
can be integrated into the EHR to provide individualized assessments of delirium risk. This study will lay the
foundation for methods of automated delirium identification and risk prediction in healthcare settings that are
unable to implement the screening by providers done in our Virtual ACE, as well as for large-scale epidemiological
investigations of delirium using EHR data, expanding the current armamentarium for studying this common and
debilitating disorder.
抽象的。谵妄或急性意识模糊状态影响30-40%的住院老年人,
估计高达70亿美元。虽然最初被概念化为一种短暂性疾病,但谵妄现在
被认为具有重大后果,包括死亡风险增加、功能下降和长期
认知障碍由于高达75%的病例没有得到医疗服务提供者的认可,
用于临床和研究目的的确定谵妄的方法,以及基于谵妄风险对患者进行分层的方法。在
在这个提议中,我们提出了一种基于大规模数据挖掘的识别谵妄的新方法(即,
模式识别)算法,使用机器学习和自然语言处理应用于电子
健康记录(EHR)数据,这将自动化基于图表的谵妄状态和风险预测的确定。
我们将联合收割机与通过我们最近实施的虚拟急性护理收集的数据相结合,
老年人(ACE)质量改进项目,该项目由护理人员每班进行一次谵妄筛查,
所有65岁以上的人都被收治到亚拉巴马大学伯明翰分校(UAB)医院。这个意外-
数据量的减少将使我们能够实现有效训练和验证所需的样本量,
数据挖掘算法数据挖掘算法发现数据中的关联模式,而不是
测试预定的假设,非常适合应用于识别的大规模算法
精神错乱使用我们的虚拟ACE和医院EHR数据,我们将能够评估10,000多名个人
特征(例如,文本单词和短语,实验室和其他诊断测试,并发的医疗条件),
与谵妄相关,将被归类为谵妄的风险因素,如体征、症状和描述符
谵妄本身,以及谵妄的并发症和后果,基于专家共识。然后我们将
使用这些特征来制定EHR中谵妄识别的规则,以及风险预测模型,
可以集成到EHR中,以提供谵妄风险的个性化评估。这项研究将奠定
在医疗保健环境中自动谵妄识别和风险预测方法的基础,
无法实施由提供者在我们的虚拟ACE中进行的筛查,以及大规模流行病学
使用EHR数据对谵妄进行调查,扩大了目前研究这种常见疾病的设备,
使人衰弱的疾病
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
RICHARD E KENNEDY其他文献
RICHARD E KENNEDY的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('RICHARD E KENNEDY', 18)}}的其他基金
Automating Delirium Identification and Risk Prediction in Electronic Health Records (Supplement)
电子健康记录中谵妄的自动化识别和风险预测(补充)
- 批准号:
10410694 - 财政年份:2019
- 资助金额:
$ 37.69万 - 项目类别:
Automating Delirium Identification and Risk Prediction in Electronic Health Records
电子健康记录中谵妄的自动化识别和风险预测
- 批准号:
10091381 - 财政年份:2019
- 资助金额:
$ 37.69万 - 项目类别:
In Silico Screening of Medications for Slowing Alzheimer's Disease Progression.
减缓阿尔茨海默病进展药物的计算机筛选。
- 批准号:
9884696 - 财政年份:2017
- 资助金额:
$ 37.69万 - 项目类别:
Mixed Effects Modeling of Microarrays Using the S-score
使用 S 分数对微阵列进行混合效应建模
- 批准号:
6935669 - 财政年份:2005
- 资助金额:
$ 37.69万 - 项目类别:
Mixed Effects Modeling of Microarrays Using the S-score
使用 S 分数对微阵列进行混合效应建模
- 批准号:
7121993 - 财政年份:2005
- 资助金额:
$ 37.69万 - 项目类别:
Mixed Effects Modeling of Microarrays Using the S-score
使用 S 分数对微阵列进行混合效应建模
- 批准号:
7272023 - 财政年份:2005
- 资助金额:
$ 37.69万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 37.69万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 37.69万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 37.69万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 37.69万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 37.69万 - 项目类别:
Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 37.69万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 37.69万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 37.69万 - 项目类别:
EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 37.69万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 37.69万 - 项目类别:
Research Grant