In Silico Screening of Medications for Slowing Alzheimer's Disease Progression.
减缓阿尔茨海默病进展药物的计算机筛选。
基本信息
- 批准号:9884696
- 负责人:
- 金额:$ 64.6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-15 至 2022-03-31
- 项目状态:已结题
- 来源:
- 关键词:AlgorithmsAlzheimer&aposs DiseaseAlzheimer&aposs disease diagnosisAlzheimer&aposs disease therapyBioinformaticsClinical DataClinical TrialsCognitiveCombination MedicationComplementDataData SetDatabasesDementiaDevelopmentDiagnosisDiseaseDisease ProgressionDrug ScreeningElectronic Health RecordFailureFutureGene ExpressionGene TargetingGenesGoalsIndividualInvestmentsLiteratureMalignant NeoplasmsMeasuresMedicalMedicareMedicare claimMethodsModelingModificationNatural experimentOutcomeParticipantPatientsPatternPattern RecognitionPharmaceutical PreparationsPhaseProcessRandomized Controlled TrialsResearchResourcesRewardsSamplingSeriesSourceTestingTherapeuticTherapeutic AgentsTherapeutic EffectTimeUnited States National Institutes of HealthValidationbasebeneficiaryclinical Diagnosisclinical careclinical encountercognitive performancecognitive testingcohortcooperative studycostdata miningdrug developmentepidemiology studyfollow-upimprovedin silicoin vivointerestlarge scale datamild cognitive impairmentmultidimensional dataneuroimagingnovelnovel strategiesnovel therapeuticsscreeningsymposiumtext searchingtherapy development
项目摘要
Drug development in Alzheimer's disease (AD) requires a considerable investment of time and re-
sources, often with little reward as the vast majority of medications ultimately prove unsuccessful. Drug repur-
posing, in which medications that already have been approved for treatment are evaluated for therapeutic effects
in other disorders, has the potential to markedly increase the number of agents in the drug development pipeline
but requires methods for effective screening of candidate medications for activity. In silico or computational ap-
proaches to medication screening are rapidly growing, and have been successful in illnesses such as cancer,
but their application to AD remains understudied. There is also intense interest in drug repurposing approaches
that will utilize the vast amounts of clinical data that are being collected from epidemiological studies and clinical
encounters documented through electronic health records (EHRs). In this proposal, we present a novel approach
to drug repurposing that uses large-scale data mining (i.e., pattern recognition) algorithms applied to concurrent
medication taken by participants in AD clinical trials and in Medicare administrative data to determine which of
these medications show potential therapeutic benefits. With over 30 years of AD clinical trial data available to us
through a recently developed meta-database and 10 years of prescription data available through Medicare Part
D, the administration of concurrent medications to patients as part of their routine clinical care constitutes a large-
scale natural experiment. This information can be harnessed for AD treatment discovery if appropriate methods
can be developed to detect effects on disease progression within this high-dimensional data. Data mining al-
gorithms that discover patterns of associations in data, rather than testing predetermined hypotheses, are well
suited to application in large-scale screening for drug repurposing. Using our meta-database and Medicare data,
we will be able to evaluate most of the more than 6,000 currently available prescription medications for efficacy
in AD using well-accepted endpoints for measuring disease progression. The discovery phase will be followed
by a validation phase of promising candidate medications in independent data sets, as well as identification of
plausible gene targets for each medication from the biomedical literature. This study will set the groundwork for a
series of follow-up in vivo studies to conclusively demonstrate effects of selected medications for AD, expanding
the current armamentarium for treating this common and debilitating disorder.
阿尔茨海默氏病(AD)的药物开发需要考虑时间和重新投资
资料来源通常几乎没有回报,因为绝大多数药物最终被证明没有成功。毒品rec-
摆姿势,其中已经批准用于治疗的药物进行治疗作用。
在其他疾病中,有可能显着增加药物开发管道中的药物数量
但是需要有效筛查候选药物进行活动的方法。在计算机或计算中
对药物筛查的精神迅速增长,并且在癌症等疾病中已经成功,
但是他们在广告中的应用仍然被理解。对药物重新利用的方法也很感兴趣
这将利用从流行病学研究和临床中收集的大量临床数据
通过电子健康记录(EHRS)记录的遇到。在此提案中,我们提出了一种新颖的方法
使用大规模数据挖掘(即模式识别)算法的药物重新利用
参与者在AD临床试验和Medicare行政数据中服用的药物,以确定哪些
这些药物显示出潜在的治疗益处。有30多年的广告临床试验数据可供我们使用
通过最近开发的元数据库和通过Medicare Part提供的10年的处方数据
D,作为其常规临床护理的一部分,对患者的并发药物构成很大的
缩放自然实验。如果适当的方法,可以利用此信息用于AD治疗发现
可以开发以检测此高维数据中对疾病进展的影响。数据挖掘
发现数据中关联的模式而不是检验预定的假设,这是很好的
适用于大规模筛查以重新利用药物。使用我们的元数据库和Medicare数据,
我们将能够评估目前有6,000多种可用处方药的效率
在AD中,使用经过良好接受的终点来测量疾病进展。发现阶段将遵循
通过在独立数据集中验证候选药物的验证阶段,并识别
生物医学文献中每种药物的合理基因靶标。这项研究将为
一系列随访在体内研究,以最终证明选定药物对AD的影响,并扩大
当前治疗这种常见和使人衰弱障碍的武术。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
RICHARD E KENNEDY其他文献
RICHARD E KENNEDY的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('RICHARD E KENNEDY', 18)}}的其他基金
Automating Delirium Identification and Risk Prediction in Electronic Health Records (Supplement)
电子健康记录中谵妄的自动化识别和风险预测(补充)
- 批准号:
10410694 - 财政年份:2019
- 资助金额:
$ 64.6万 - 项目类别:
Automating Delirium Identification and Risk Prediction in Electronic Health Records
电子健康记录中谵妄的自动化识别和风险预测
- 批准号:
10341053 - 财政年份:2019
- 资助金额:
$ 64.6万 - 项目类别:
Automating Delirium Identification and Risk Prediction in Electronic Health Records
电子健康记录中谵妄的自动化识别和风险预测
- 批准号:
10091381 - 财政年份:2019
- 资助金额:
$ 64.6万 - 项目类别:
Mixed Effects Modeling of Microarrays Using the S-score
使用 S 分数对微阵列进行混合效应建模
- 批准号:
6935669 - 财政年份:2005
- 资助金额:
$ 64.6万 - 项目类别:
Mixed Effects Modeling of Microarrays Using the S-score
使用 S 分数对微阵列进行混合效应建模
- 批准号:
7121993 - 财政年份:2005
- 资助金额:
$ 64.6万 - 项目类别:
Mixed Effects Modeling of Microarrays Using the S-score
使用 S 分数对微阵列进行混合效应建模
- 批准号:
7272023 - 财政年份:2005
- 资助金额:
$ 64.6万 - 项目类别:
相似海外基金
Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
- 批准号:
10462257 - 财政年份:2023
- 资助金额:
$ 64.6万 - 项目类别:
A software tool to facilitate variable-level equivalency and harmonization in research data: Leveraging the NIH Common Data Elements Repository to link concepts and measures in an open format
促进研究数据中变量级别等效性和协调性的软件工具:利用 NIH 通用数据元素存储库以开放格式链接概念和测量
- 批准号:
10821517 - 财政年份:2023
- 资助金额:
$ 64.6万 - 项目类别:
Clinical Decision Support System for Early Detection of Cognitive Decline Using Electronic Health Records and Deep Learning
利用电子健康记录和深度学习早期检测认知衰退的临床决策支持系统
- 批准号:
10603902 - 财政年份:2023
- 资助金额:
$ 64.6万 - 项目类别:
Brain Digital Slide Archive: An Open Source Platform for data sharing and analysis of digital neuropathology
Brain Digital Slide Archive:数字神经病理学数据共享和分析的开源平台
- 批准号:
10735564 - 财政年份:2023
- 资助金额:
$ 64.6万 - 项目类别:
SCH: Dementia Early Detection for Under-represented Populations via Fair Multimodal Self-Supervised Learning
SCH:通过公平的多模式自我监督学习对代表性不足的人群进行痴呆症早期检测
- 批准号:
10816864 - 财政年份:2023
- 资助金额:
$ 64.6万 - 项目类别: