A longitudinal machine learning approach providing clinicians timely detection to prevent military suicide
纵向机器学习方法为临床医生提供及时检测以防止军人自杀
基本信息
- 批准号:10727520
- 负责人:
- 金额:$ 4.94万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-30 至 2025-09-29
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
PROJECT SUMMARY
The suicide rates among U.S. military service members and Veterans (MV) remain alarmingly high. The suicide
rate for active military service members has increased from 20.4 suicides in 2014 to 28.7 suicides in 2020 per
100,000. Veterans’ suicide rates have remained high, approximately 2 times higher than the general population
(14.5 per 100,000). Unfortunately, the current suicide approaches from the Department of Defense and the
Department of Veterans Affairs are insufficient. Further, recent literature shows inconsistent findings of suicide
causes and suicide attempts across measures and time points, and lack of effectiveness of suicide screening
and interventions. This is problematic for proactively and effectively preventing and stopping suicide among the
MV populations. Additionally, less research has focused on suicide ideation than suicide completion/deaths,
which means we are ultimately missing the first chance to stifle suicide and address risk factors.
We will use secondary datasets and innovative machine learning (ML) to develop early screening and
intervention modeling to address military suicide issues. The study will apply data-driven ML to improve MV
healthcare quality by accelerating the implementation of patient-centered outcomes research, using several
personalized-contextual variables of 10 clinically applicable dimensions, to predict suicide risk levels. Further,
we will develop person-centered, context-sensitive ML modeling for suicide ideation (SI) and suicide attempt (SA)
data-visualization profiles, which will assist in clinical screening, evaluation, and intervention. Our specific aims
are to (1) establish ML algorithms detecting SI/SA at different military statuses to inform clinicians and (2) develop
an SI/SA cross-sectional and longitudinal risk data-visualization profile for clinicians. Our overarching goals are
to demonstrate (1) a new SI/SA screening paradigm and (2) a new SI/SA prevention, evidence-based
intervention, and policy-making model for the MV populations.
We harness big data and innovative ML applications to provide a 360-degree view of MV patients, which will
improve healthcare quality and MV patient outcomes, specifically decreasing SI/SA. Our project will exemplify
the Healthcare Effectiveness and Outcomes Research mission to make healthcare safer, higher quality, more
accessible, equitable, and affordable. Most importantly, we will ensure that clinical professionals and relevant
stakeholders who serve the MV populations can understand and apply the study’s findings.
项目总结
美国军人和退伍军人(MV)的自杀率仍然高得惊人。自杀
现役军人的自杀率从2014年的20.4人增加到2020年的28.7人
10万。退伍军人的自杀率一直居高不下,大约是普通人群的两倍
(每10万人14.5人)。不幸的是,目前国防部和
退伍军人事务部是不够的。此外,最近的文献显示自杀的结果不一致。
不同措施和时间点的原因和自杀企图,以及自杀筛查缺乏有效性
和干预措施。这对于主动有效地预防和阻止老年人自杀是有问题的。
MV种群。此外,更少的研究关注自杀意念,而不是自杀完成/死亡,
这意味着我们最终错过了扼杀自杀和解决风险因素的第一次机会。
我们将使用辅助数据集和创新的机器学习(ML)来开发早期筛查和
解决军人自杀问题的干预模式。这项研究将应用数据驱动的ML来提高MV
通过加速实施以患者为中心的结果研究,使用几个
个人化--10个临床适用维度的背景变量,用于预测自杀风险水平。此外,
我们将为自杀意念(SI)和自杀企图(SA)开发以人为中心的、上下文敏感的ML建模
数据可视化配置文件,这将有助于临床筛选、评估和干预。我们的具体目标
(1)建立在不同军事状态下检测SI/SA的ML算法,以告知临床医生;(2)开发
供临床医生使用的SI/SA横断面和纵向风险数据可视化配置文件。我们的首要目标是
展示(1)新的SI/SA筛查范例和(2)新的基于证据的SI/SA预防
针对MV人群的干预和政策制定模式。
我们利用大数据和创新的ML应用程序提供MV患者的360度视图,这将
改善医疗质量和MV患者结局,特别是降低SI/SA。我们的项目将成为
医疗有效性和结果研究使命,使医疗更安全、更高质量、更
可及、公平和负担得起。最重要的是,我们将确保临床专业人员和相关人员
服务于MV人群的利益相关者可以理解和应用这项研究的发现。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Chung-Yi Chiu其他文献
Chung-Yi Chiu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
Understanding structural evolution of galaxies with machine learning
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
非标准随机调度模型的最优动态策略
- 批准号:71071056
- 批准年份:2010
- 资助金额:28.0 万元
- 项目类别:面上项目
微生物发酵过程的自组织建模与优化控制
- 批准号:60704036
- 批准年份:2007
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Machine learning-based prediction models for morbidity and mortality risk of cardiometabolic diseases in post-disaster residents by using the Fukushima longitudinal health data
利用福岛纵向健康数据基于机器学习的灾后居民心脏代谢疾病发病和死亡风险预测模型
- 批准号:
24K13482 - 财政年份:2024
- 资助金额:
$ 4.94万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Risk stratifying indeterminate pulmonary nodules with jointly learned features from longitudinal radiologic and clinical big data
利用纵向放射学和临床大数据共同学习的特征对不确定的肺结节进行风险分层
- 批准号:
10678264 - 财政年份:2023
- 资助金额:
$ 4.94万 - 项目类别:
Advancing On-Slide and Optical Biopsy Tools to Detect High-Risk Oral Premalignancy
先进的载玻片和光学活检工具来检测高风险口腔癌前病变
- 批准号:
10768888 - 财政年份:2023
- 资助金额:
$ 4.94万 - 项目类别:
SCH: Dementia Early Detection for Under-represented Populations via Fair Multimodal Self-Supervised Learning
SCH:通过公平的多模式自我监督学习对代表性不足的人群进行痴呆症早期检测
- 批准号:
10816864 - 财政年份:2023
- 资助金额:
$ 4.94万 - 项目类别:
Integrative Data Science Approach to Advance Care Coordination of ADRD by Primary Care Providers
综合数据科学方法促进初级保健提供者对 ADRD 的护理协调
- 批准号:
10722568 - 财政年份:2023
- 资助金额:
$ 4.94万 - 项目类别:
Detecting Adolescent Suicidality Biometric Signals and Dynamic Variability with Wearable Technology
利用可穿戴技术检测青少年自杀生物特征信号和动态变异性
- 批准号:
10731651 - 财政年份:2023
- 资助金额:
$ 4.94万 - 项目类别:
Mapping the Neurobiological Risks and Consequences of Alcohol Use in Adolescence and Across the Lifespan
绘制青春期和整个生命周期饮酒的神经生物学风险和后果
- 批准号:
10733406 - 财政年份:2023
- 资助金额:
$ 4.94万 - 项目类别:
Building predictive algorithms to identify resilience and resistance to Alzheimer's disease
构建预测算法来识别对阿尔茨海默病的恢复力和抵抗力
- 批准号:
10659007 - 财政年份:2023
- 资助金额:
$ 4.94万 - 项目类别:
tRNA-derived RNA Fragments (tRF) as Prognostic and Diagnostic Biomarkers for Alzheimer’s Disease
tRNA 衍生的 RNA 片段 (tRF) 作为阿尔茨海默病的预后和诊断生物标志物
- 批准号:
10578546 - 财政年份:2023
- 资助金额:
$ 4.94万 - 项目类别: