Integrated blood and radiomic subtyping to guide immunotherapy treatment selection and early response assessment in metastatic non-small cell lung cancer
综合血液和放射组学亚型,指导转移性非小细胞肺癌的免疫治疗选择和早期反应评估
基本信息
- 批准号:10734127
- 负责人:
- 金额:$ 67.66万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-07-01 至 2028-06-30
- 项目状态:未结题
- 来源:
- 关键词:AlgorithmsBiologicalBiological AssayBiological MarkersBiologyBiopsyBloodBlood specimenCancer BiologyCancer CenterCancer PatientClassificationClinicalClinical DataClinical ManagementCodeCollaborationsCombined Modality TherapyCouplingDNA Sequence AlterationDNA sequencingDataData ScienceData SetDatabasesDecision MakingDevelopmentFDA approvedFoundationsGeneral HospitalsGoalsImageImage AnalysisImmuneImmune checkpoint inhibitorImmunooncologyImmunotherapyInvestigationLesionMagnetic Resonance ImagingMalignant NeoplasmsMalignant neoplasm of lungMapsMassachusettsMeasurableMethylationModalityModelingMolecularMolecular ProfilingMultiomic DataMutationNon-Small-Cell Lung CarcinomaOncologyOrganOutcomePET/CT scanPatientsPerformancePhasePhenotypeProviderRadiogenomicsRadiology SpecialtyRecurrent diseaseRegimenResearchScanningSelection for TreatmentsSiteSpecimenSubgroupTechniquesTestingTherapeuticThoracic OncologyTissuesToxicity due to chemotherapyTranslatingTreatment ProtocolsTumor BiologyValidationanalytical toolbench to bedsideblood treatmentcancer genomicscheckpoint therapychemotherapyclinical assay developmentclinical decision-makingclinical predictorsclinically relevantcohortdata integrationdeep learningimaging biomarkerimmune cell infiltrateimprovedimproved outcomeindividual patientinnovationmolecular phenotypenoveloutcome predictionpersonalized immunotherapypredicting responsepredictive modelingprogrammed cell death ligand 1prospectiveradiological imagingradiomicsresponsesuccesstreatment responsetreatment strategytumortumor DNA
项目摘要
ABSTRACT
Immune checkpoint inhibitors (ICIs) have improved outcomes in metastatic non-small cell lung cancer (NSCLC),
and providers may now choose between multiple first-line ICI-based regimens including ICI monotherapy and
ICI with chemotherapy. However, this increase in options has complicated clinical management, with few
biomarkers to guide upfront ICI treatment selection, and incomplete metrics for early on-treatment assessment
of response to ICI therapy. Hence, there is an urgent need for novel analytics tools to optimize and personalize
immunotherapy treatment strategies. While prior biomarker efforts have focused largely on tissue-based
molecular profiling, these have demonstrated limited predictive power and are difficult to implement due to
practical limitations in acquiring pre- and on-treatment tissue. In contrast, imaging and blood-based assays offer
a unique and non-invasive mechanism by which the biology of the tumor and the changes on treatment can be
studied and modeled. Thus, we propose an integrated radiomic-blood analysis to develop predictors of pre- and
on-treatment response to guide the clinical management of NSCLC. Our primary goal is to develop radiomic-
blood signatures for precision immunotherapy in advanced NSCLC by leveraging our expertise in data science,
thoracic oncology, cancer genomics, computational oncology, clinical assay development, and established
research collaborations. Our preliminary data demonstrates our success in utilizing multi-parametric profiling of
circulating tumor DNA to identify molecular phenotypes associated with ICI outcome and disease recurrence,
and in developing novel radiomic subtyping techniques with superior outcome prediction and demonstrated
association with underlying lung cancer biology. Hence, we hypothesize that coupling radiomic and blood-based
metrics can non-invasively inform therapeutic decision-making in NSCLC management while advancing our
understanding of NSCLC biology. To advance this hypothesis, we have assembled a unique set of cohorts of
metastatic NSCLC patients treated with ICI regimens with high-quality radiographic scans, blood samples, and
molecular and clinical data: our in-house lung cancer database (GEMINI, n=5000); a validation dataset from our
collaboration with the Massachusetts General Hospital (MGH) Cancer Center (MGH, n=600); the multicenter
collaborative Stand Up 2 Cancer/Mark Foundation cohort (SU2C, n=400), and a prospective phase III ICI trial
(LONESTAR, n=300). Our proposal builds on these unique cohorts and our promising preliminary data to
construct predictive models to guide up-front ICI therapy selection and improve on-treatment response
assessment, while complementary investigations will uncover the biology underlying these clinical predictors. A
major strength of our proposal is our interdisciplinary team’s expertise in developing, validating, and translating
these innovative predictive models toward highly relevant clinical questions. The development of integrative
blood- and imaging-based radio-genomic biomarkers will help improve the clinical management of patients with
metastatic NSCLC while helping progress the field toward a new era of non-invasive precision immunooncology.
摘要
免疫检查点抑制剂(ICI)改善了转移性非小细胞肺癌(NSCLC)的结局,
提供者现在可以在多种基于ICI的一线治疗方案之间进行选择,包括ICI单药治疗,
ICI+化疗。然而,这种选择的增加使临床管理复杂化,
用于指导前期ICI治疗选择的生物标志物,以及用于早期治疗评估的不完整指标
对ICI疗法的反应。因此,迫切需要新的分析工具来优化和个性化
免疫治疗策略。虽然先前的生物标志物工作主要集中在基于组织的
分子谱分析,这些已经证明了有限的预测能力,并且由于
在获取治疗前和治疗中的组织方面的实际限制。相比之下,成像和基于血液的分析提供了
一种独特的非侵入性机制,通过这种机制,肿瘤的生物学和治疗变化可以被
研究和建模。因此,我们提出了一个综合的放射性血液分析,以发展预测的前和
治疗中的反应,以指导NSCLC的临床管理。我们的主要目标是发展放射性-
利用我们在数据科学方面的专业知识,
胸肿瘤学、癌症基因组学、计算肿瘤学、临床检测开发,以及已建立的
研究合作。我们的初步数据表明,我们成功地利用多参数分析,
循环肿瘤DNA以鉴定与ICI结果和疾病复发相关的分子表型,
并在开发新的放射组学分型技术,具有优越的上级结果预测和证明
与潜在的肺癌生物学之间的关系。因此,我们假设,将放射组学和基于血液的
指标可以非侵入性地告知NSCLC管理中的治疗决策,同时推进我们的
了解NSCLC生物学。为了推进这一假设,我们收集了一组独特的队列,
接受ICI方案治疗的转移性NSCLC患者,采用高质量的放射学扫描、血液样本,
分子和临床数据:我们的内部肺癌数据库(GEMINI,n=5000);我们的验证数据集
与马萨诸塞州总医院(MGH)癌症中心(MGH,n=600)合作;多中心
协作Stand Up 2癌症/Mark基金会队列(SU 2C,n=400)和前瞻性III期ICI试验
(LONESTAR,n=300)。我们的建议建立在这些独特的队列和我们有希望的初步数据的基础上,
构建预测模型以指导前期ICI治疗选择并改善治疗反应
评估,而补充研究将揭示这些临床预测因素的生物学基础。一
我们的建议的主要优势是我们的跨学科团队在开发,验证和翻译方面的专业知识
这些创新的预测模型,对高度相关的临床问题。一体化发展
基于血液和成像的放射性基因组生物标志物将有助于改善患者的临床管理,
转移性非小细胞肺癌,同时帮助该领域迈向无创精确免疫肿瘤学的新时代。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Natalie Vokes其他文献
Natalie Vokes的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Defining the biological boundaries to sustain extant life on Mars
定义维持火星现存生命的生物边界
- 批准号:
DP240102658 - 财政年份:2024
- 资助金额:
$ 67.66万 - 项目类别:
Discovery Projects
Advanced Multiscale Biological Imaging using European Infrastructures
利用欧洲基础设施进行先进的多尺度生物成像
- 批准号:
EP/Y036654/1 - 财政年份:2024
- 资助金额:
$ 67.66万 - 项目类别:
Research Grant
Open Access Block Award 2024 - Marine Biological Association
2024 年开放获取区块奖 - 海洋生物学协会
- 批准号:
EP/Z532538/1 - 财政年份:2024
- 资助金额:
$ 67.66万 - 项目类别:
Research Grant
NSF/BIO-DFG: Biological Fe-S intermediates in the synthesis of nitrogenase metalloclusters
NSF/BIO-DFG:固氮酶金属簇合成中的生物 Fe-S 中间体
- 批准号:
2335999 - 财政年份:2024
- 资助金额:
$ 67.66万 - 项目类别:
Standard Grant
DESIGN: Driving Culture Change in a Federation of Biological Societies via Cohort-Based Early-Career Leaders
设计:通过基于队列的早期职业领袖推动生物协会联盟的文化变革
- 批准号:
2334679 - 财政年份:2024
- 资助金额:
$ 67.66万 - 项目类别:
Standard Grant
Collaborative Research: The Interplay of Water Condensation and Fungal Growth on Biological Surfaces
合作研究:水凝结与生物表面真菌生长的相互作用
- 批准号:
2401507 - 财政年份:2024
- 资助金额:
$ 67.66万 - 项目类别:
Standard Grant
REU Site: Modeling the Dynamics of Biological Systems
REU 网站:生物系统动力学建模
- 批准号:
2243955 - 财政年份:2024
- 资助金额:
$ 67.66万 - 项目类别:
Standard Grant
Collaborative Research: Conference: Large Language Models for Biological Discoveries (LLMs4Bio)
合作研究:会议:生物发现的大型语言模型 (LLMs4Bio)
- 批准号:
2411529 - 财政年份:2024
- 资助金额:
$ 67.66万 - 项目类别:
Standard Grant
Collaborative Research: Conference: Large Language Models for Biological Discoveries (LLMs4Bio)
合作研究:会议:生物发现的大型语言模型 (LLMs4Bio)
- 批准号:
2411530 - 财政年份:2024
- 资助金额:
$ 67.66万 - 项目类别:
Standard Grant
Collaborative Research: NSF-ANR MCB/PHY: Probing Heterogeneity of Biological Systems by Force Spectroscopy
合作研究:NSF-ANR MCB/PHY:通过力谱探测生物系统的异质性
- 批准号:
2412551 - 财政年份:2024
- 资助金额:
$ 67.66万 - 项目类别:
Standard Grant