Mathematical Model-Based Optimization of CRT Response in Ischemia

基于数学模型的缺血 CRT 反应优化

基本信息

项目摘要

PROJECT SUMMARY/ABSTRACT Application of multiscale computer modeling to help guide and elucidate heart disease treatments is emerging. Computational modeling, however, has not been exploited for optimizing cardiac resynchronization therapy (CRT). While CRT has emerged as a powerful treatment for heart failure (HF) to restore normal activation pattern in the heart, about 30% of patients still do not improve after therapy (non-responders). Improvement of responder rate therefore remains a crucial clinical challenge and the holy grail of CRT. We believe that computational modeling can help optimize CRT and improve the responder rate. Equally important, the development of a multiscale computational framework that considers the key physics of the heart can help understand several novel pacing therapies (e.g., conduction system pacing (CSP) including HIS bundle pacing and left branch bundle (LBB) pacing) that have been developed recently to improve the responder rate. Specifically, computational modeling can help elucidate the key factors affecting the long and short-term effectiveness of these pacing therapies in patients with different intraventricular conduction delay and/or LV scar/ischemia. Here, the overall goal here is to develop computational approaches that combine machine learning algorithms and physics-based modeling to fundamentally understand the short and long-term effects of CRT that includes CSP, optimize CRT, and to elucidate the advantages and disadvantages of CSP over standard CRT. The following specific aims are constructed to accomplish this goal. First, we will develop an experimentally-validated multiscale cardiac electro-mechanics-perfusion (EMP) computational framework to simulate the chronic effects of CRT and CSP in treating mechanical dyssynchrony in LBBB + ischemia. Second, we will integrate the computational modeling framework with efficient machine learning and optimization algorithms to optimize CRT with LV epicardial and endocardial pacing in ischemia. Third, we will use the validated multiscale computational EMP framework to elucidate the effects and factors affecting the response of CSP in ischemia. The proposed approach and methodologies are innovative. More importantly, successful completion will directly translate the findings to the clinic for optimization of CRT therapy to reduce non-responder rates as well as patient identification for different pacing therapies. This would have substantial impact on improving the treatment and reducing the cost of HF epidemic.
项目摘要/摘要 多尺度计算机建模在帮助指导和阐明心脏病治疗方面的应用正在兴起。 然而,计算模型还没有被用于优化心脏再同步治疗 (CRT)。虽然CRT已经成为治疗心力衰竭(HF)的一种恢复正常激活模式的强大疗法 在心脏方面,大约30%的患者在治疗后仍然没有改善(无反应者)。提高应答者的素质 因此,Rate仍然是CRT的一个关键的临床挑战和圣杯。我们相信计算能力 建模可以帮助优化CRT,提高响应率。同样重要的是,开发一个 考虑心脏关键物理的多尺度计算框架可以帮助理解以下几个 新的起搏疗法(例如,传导系统起搏(CSP),包括希氏束起搏和左支起搏 束(LBB)起搏),这是最近为提高应答率而开发的。具体来说, 计算机模拟可以帮助阐明影响长期和短期效果的关键因素 这些起搏疗法适用于有不同室内传导延迟和/或左心室瘢痕/缺血的患者。这里, 这里的总体目标是开发结合机器学习算法和 基于物理的建模,以从根本上了解CRT的短期和长期影响,包括CSP, 优化CRT,阐明CSP相对于标准CRT的优缺点。以下是 具体目标是为实现这一目标而构建的。首先,我们将开发一种经过实验验证的 模拟慢性效应的多尺度心脏电力学-灌流(EMP)计算框架 CRT和CSP治疗LBBB+缺血的机械不同步性第二,我们将整合 采用高效机器学习和优化算法优化CRT的计算建模框架 缺血时采用左心外膜和心内膜起搏。第三,我们将使用经过验证的多尺度计算 EMP框架阐明CSP在脑缺血中的作用及影响因素。建议数 方法和方法都是创新的。更重要的是,成功完成将直接将 对临床优化CRT治疗以降低无应答率和患者的研究结果 不同起搏疗法的识别。这将对改善治疗和 降低出血热疫情的成本。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

GHASSAN S KASSAB其他文献

GHASSAN S KASSAB的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('GHASSAN S KASSAB', 18)}}的其他基金

Mechanisms of coronary flow heterogeneity: Implications for coronary sinus occlusion therapy
冠状动脉血流异质性的机制:对冠状窦封堵治疗的影响
  • 批准号:
    10645096
  • 财政年份:
    2022
  • 资助金额:
    $ 81.2万
  • 项目类别:
Left Atrial Appendage Inversion to Prevent Stroke
左心耳倒转预防中风
  • 批准号:
    10006358
  • 财政年份:
    2020
  • 资助金额:
    $ 81.2万
  • 项目类别:
New Access Kit for Lymphatic Interventions
用于淋巴干预的新接入套件
  • 批准号:
    10079003
  • 财政年份:
    2020
  • 资助金额:
    $ 81.2万
  • 项目类别:
Roles of Ischemia and mechanical dyssynchrony in optimizing CRT responses
缺血和机械不同步在优化 CRT 反应中的作用
  • 批准号:
    9381294
  • 财政年份:
    2017
  • 资助金额:
    $ 81.2万
  • 项目类别:
Suction Device for Control and Accuracy of Transseptal Access
用于控制和精确进行房间隔进入的抽吸装置
  • 批准号:
    9346212
  • 财政年份:
    2017
  • 资助金额:
    $ 81.2万
  • 项目类别:
Roles of Ischemia and mechanical dyssynchrony in optimizing CRT responses
缺血和机械不同步在优化 CRT 反应中的作用
  • 批准号:
    9914123
  • 财政年份:
    2017
  • 资助金额:
    $ 81.2万
  • 项目类别:
Micro-Mechanical Role of Hypertension in Intimal Hyperplasia
高血压在内膜增生中的微机械作用
  • 批准号:
    8880455
  • 财政年份:
    2013
  • 资助金额:
    $ 81.2万
  • 项目类别:
Micro-Mechanical Role of Hypertension in Intimal Hyperplasia
高血压在内膜增生中的微机械作用
  • 批准号:
    8583495
  • 财政年份:
    2013
  • 资助金额:
    $ 81.2万
  • 项目类别:
Stabilization Device for Transseptal Access
用于房间隔接入的稳定装置
  • 批准号:
    8591527
  • 财政年份:
    2013
  • 资助金额:
    $ 81.2万
  • 项目类别:
CT-Based Diagnosis of Diffuse Coronary Artery Disease
基于 CT 的弥漫性冠状动脉疾病诊断
  • 批准号:
    8274323
  • 财政年份:
    2009
  • 资助金额:
    $ 81.2万
  • 项目类别:

相似海外基金

Transcriptional assessment of haematopoietic differentiation to risk-stratify acute lymphoblastic leukaemia
造血分化的转录评估对急性淋巴细胞白血病的风险分层
  • 批准号:
    MR/Y009568/1
  • 财政年份:
    2024
  • 资助金额:
    $ 81.2万
  • 项目类别:
    Fellowship
Combining two unique AI platforms for the discovery of novel genetic therapeutic targets & preclinical validation of synthetic biomolecules to treat Acute myeloid leukaemia (AML).
结合两个独特的人工智能平台来发现新的基因治疗靶点
  • 批准号:
    10090332
  • 财政年份:
    2024
  • 资助金额:
    $ 81.2万
  • 项目类别:
    Collaborative R&D
Acute senescence: a novel host defence counteracting typhoidal Salmonella
急性衰老:对抗伤寒沙门氏菌的新型宿主防御
  • 批准号:
    MR/X02329X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 81.2万
  • 项目类别:
    Fellowship
Cellular Neuroinflammation in Acute Brain Injury
急性脑损伤中的细胞神经炎症
  • 批准号:
    MR/X021882/1
  • 财政年份:
    2024
  • 资助金额:
    $ 81.2万
  • 项目类别:
    Research Grant
STTR Phase I: Non-invasive focused ultrasound treatment to modulate the immune system for acute and chronic kidney rejection
STTR 第一期:非侵入性聚焦超声治疗调节免疫系统以治疗急性和慢性肾排斥
  • 批准号:
    2312694
  • 财政年份:
    2024
  • 资助金额:
    $ 81.2万
  • 项目类别:
    Standard Grant
Combining Mechanistic Modelling with Machine Learning for Diagnosis of Acute Respiratory Distress Syndrome
机械建模与机器学习相结合诊断急性呼吸窘迫综合征
  • 批准号:
    EP/Y003527/1
  • 财政年份:
    2024
  • 资助金额:
    $ 81.2万
  • 项目类别:
    Research Grant
FITEAML: Functional Interrogation of Transposable Elements in Acute Myeloid Leukaemia
FITEAML:急性髓系白血病转座元件的功能研究
  • 批准号:
    EP/Y030338/1
  • 财政年份:
    2024
  • 资助金额:
    $ 81.2万
  • 项目类别:
    Research Grant
KAT2A PROTACs targetting the differentiation of blasts and leukemic stem cells for the treatment of Acute Myeloid Leukaemia
KAT2A PROTAC 靶向原始细胞和白血病干细胞的分化,用于治疗急性髓系白血病
  • 批准号:
    MR/X029557/1
  • 财政年份:
    2024
  • 资助金额:
    $ 81.2万
  • 项目类别:
    Research Grant
ロボット支援肝切除術は真に低侵襲なのか?acute phaseに着目して
机器人辅助肝切除术真的是微创吗?
  • 批准号:
    24K19395
  • 财政年份:
    2024
  • 资助金额:
    $ 81.2万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Collaborative Research: Changes and Impact of Right Ventricle Viscoelasticity Under Acute Stress and Chronic Pulmonary Hypertension
合作研究:急性应激和慢性肺动脉高压下右心室粘弹性的变化和影响
  • 批准号:
    2244994
  • 财政年份:
    2023
  • 资助金额:
    $ 81.2万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了