Mathematical Model-Based Optimization of CRT Response in Ischemia
基于数学模型的缺血 CRT 反应优化
基本信息
- 批准号:10734486
- 负责人:
- 金额:$ 81.2万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-07-01 至 2027-06-30
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAcuteAddressAffectAlgorithmsAnimal ModelAnimalsBlood VesselsBundle-Branch BlockCardiacCardiovascular systemChronicCicatrixClinicClinicalComputer ModelsCoronaryCoronary sinus structureCouplingDevelopmentDisadvantagedDiseaseEffectivenessElectrophysiology (science)EpidemicGeometryGoalsGrowthHealth Care CostsHeartHeart DiseasesHeart failureHistologyInfarctionIntraventricularIschemiaKnowledgeLeftLocationLong-Term EffectsMachine LearningMapsMeasuresMechanicsMethodologyModelingMorphologyOutcomePatientsPatternPerfusionPhysicsPhysiologicalPositioning AttributePropertyPurkinje CellsRecommendationReperfusion TherapyRoleSeveritiesSpatial DistributionStructure of purkinje fibersSubendocardial LayerSurfaceSystemTimeTranslatingVentricularWorkcardiac resynchronization therapyclinically relevantcomputational platformcomputer frameworkcoronary perfusioncosthemodynamicsimprovedinnovationmachine learning algorithmmathematical modelmortalitynovelnovel strategiesprematurepreservationresponsesuccesstreatment optimizationtreatment response
项目摘要
PROJECT SUMMARY/ABSTRACT
Application of multiscale computer modeling to help guide and elucidate heart disease treatments is emerging.
Computational modeling, however, has not been exploited for optimizing cardiac resynchronization therapy
(CRT). While CRT has emerged as a powerful treatment for heart failure (HF) to restore normal activation pattern
in the heart, about 30% of patients still do not improve after therapy (non-responders). Improvement of responder
rate therefore remains a crucial clinical challenge and the holy grail of CRT. We believe that computational
modeling can help optimize CRT and improve the responder rate. Equally important, the development of a
multiscale computational framework that considers the key physics of the heart can help understand several
novel pacing therapies (e.g., conduction system pacing (CSP) including HIS bundle pacing and left branch
bundle (LBB) pacing) that have been developed recently to improve the responder rate. Specifically,
computational modeling can help elucidate the key factors affecting the long and short-term effectiveness of
these pacing therapies in patients with different intraventricular conduction delay and/or LV scar/ischemia. Here,
the overall goal here is to develop computational approaches that combine machine learning algorithms and
physics-based modeling to fundamentally understand the short and long-term effects of CRT that includes CSP,
optimize CRT, and to elucidate the advantages and disadvantages of CSP over standard CRT. The following
specific aims are constructed to accomplish this goal. First, we will develop an experimentally-validated
multiscale cardiac electro-mechanics-perfusion (EMP) computational framework to simulate the chronic effects
of CRT and CSP in treating mechanical dyssynchrony in LBBB + ischemia. Second, we will integrate the
computational modeling framework with efficient machine learning and optimization algorithms to optimize CRT
with LV epicardial and endocardial pacing in ischemia. Third, we will use the validated multiscale computational
EMP framework to elucidate the effects and factors affecting the response of CSP in ischemia. The proposed
approach and methodologies are innovative. More importantly, successful completion will directly translate the
findings to the clinic for optimization of CRT therapy to reduce non-responder rates as well as patient
identification for different pacing therapies. This would have substantial impact on improving the treatment and
reducing the cost of HF epidemic.
项目摘要/摘要
多尺度计算机建模的应用以帮助指导和阐明心脏病治疗。
但是,尚未利用计算建模来优化心脏重新同步治疗
(CRT)。虽然CRT已成为对心力衰竭(HF)的强大治疗方法,以恢复正常激活模式
在心脏中,大约30%的患者在治疗后仍无法改善(无反应者)。响应者的改进
因此,速率仍然是至关重要的临床挑战和CRT的圣杯。我们相信计算
建模可以帮助优化CRT并提高响应率。同样重要的是,发展
考虑心脏关键物理的多尺度计算框架可以帮助理解几个
新颖的起搏疗法(例如,传导系统起搏(CSP),包括他的束起搏和左分支
最近开发的捆绑包(LBB)起搏)以提高响应率。具体来说,
计算建模可以帮助阐明影响长期和短期有效性的关键因素
这些起搏疗法在具有不同脑室内传导延迟和/或LV疤痕/缺血的患者中。这里,
这里的总体目标是开发结合机器学习算法和的计算方法
基于物理学的建模,从根本上了解包括CSP在内的CRT的短期和长期影响,
优化CRT,并阐明CSP比标准CRT的优势和缺点。下列
构建了具体目标以实现这一目标。首先,我们将开发实验验证的
多尺度心脏电力力学 - 灌注(EMP)计算框架,以模拟慢性效应
CRT和CSP在LBBB +缺血中治疗机械性异质的方面。第二,我们将整合
具有高效的机器学习和优化算法以优化CRT的计算建模框架
缺血中的LV心外膜和心内膜节奏。第三,我们将使用经过验证的多尺度计算
EMP框架以阐明影响CSP在缺血中的反应的影响和因素。提议
方法和方法是创新的。更重要的是,成功完成将直接转化
诊所的发现,以优化CRT治疗以降低无响应率和患者
不同起搏疗法的识别。这将对改善治疗和
降低HF流行的成本。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
GHASSAN S KASSAB其他文献
GHASSAN S KASSAB的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('GHASSAN S KASSAB', 18)}}的其他基金
Mechanisms of coronary flow heterogeneity: Implications for coronary sinus occlusion therapy
冠状动脉血流异质性的机制:对冠状窦封堵治疗的影响
- 批准号:
10645096 - 财政年份:2022
- 资助金额:
$ 81.2万 - 项目类别:
Roles of Ischemia and mechanical dyssynchrony in optimizing CRT responses
缺血和机械不同步在优化 CRT 反应中的作用
- 批准号:
9381294 - 财政年份:2017
- 资助金额:
$ 81.2万 - 项目类别:
Suction Device for Control and Accuracy of Transseptal Access
用于控制和精确进行房间隔进入的抽吸装置
- 批准号:
9346212 - 财政年份:2017
- 资助金额:
$ 81.2万 - 项目类别:
Roles of Ischemia and mechanical dyssynchrony in optimizing CRT responses
缺血和机械不同步在优化 CRT 反应中的作用
- 批准号:
9914123 - 财政年份:2017
- 资助金额:
$ 81.2万 - 项目类别:
Micro-Mechanical Role of Hypertension in Intimal Hyperplasia
高血压在内膜增生中的微机械作用
- 批准号:
8880455 - 财政年份:2013
- 资助金额:
$ 81.2万 - 项目类别:
Micro-Mechanical Role of Hypertension in Intimal Hyperplasia
高血压在内膜增生中的微机械作用
- 批准号:
8583495 - 财政年份:2013
- 资助金额:
$ 81.2万 - 项目类别:
CT-Based Diagnosis of Diffuse Coronary Artery Disease
基于 CT 的弥漫性冠状动脉疾病诊断
- 批准号:
8274323 - 财政年份:2009
- 资助金额:
$ 81.2万 - 项目类别:
相似国自然基金
阿魏酸基天然抗氧化抗炎纳米药物用于急性肾损伤诊疗一体化研究
- 批准号:82302281
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
SGO2/MAD2互作调控肝祖细胞的细胞周期再进入影响急性肝衰竭肝再生的机制研究
- 批准号:82300697
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于hemin-MOFs的急性心肌梗塞标志物负背景光电化学-比色双模分析
- 批准号:22304039
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
RNA甲基转移酶NSUN2介导SCD1 mRNA m5C修饰调控急性髓系白血病细胞铁死亡的机制研究
- 批准号:82300173
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于IRF5/MYD88信号通路调控巨噬细胞M1极化探讨针刀刺营治疗急性扁桃体炎的机制研究
- 批准号:82360957
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:地区科学基金项目
相似海外基金
Mechanical signaling through the nuclear membrane in lung alveolar health
通过核膜的机械信号传导影响肺泡健康
- 批准号:
10677169 - 财政年份:2023
- 资助金额:
$ 81.2万 - 项目类别:
p16INK4a+ fibroblasts regulate epithelial regeneration after injury in lung alveoli through the SASP
p16INK4a成纤维细胞通过SASP调节肺泡损伤后的上皮再生
- 批准号:
10643269 - 财政年份:2023
- 资助金额:
$ 81.2万 - 项目类别:
3D Bioprinting of a Bioelectric Cell Bridge for Re-engineering Cardiac Conduction
用于重新设计心脏传导的生物电细胞桥的 3D 生物打印
- 批准号:
10753836 - 财政年份:2023
- 资助金额:
$ 81.2万 - 项目类别:
Genome Instability Induced Anti-Tumor Immune Responses
基因组不稳定性诱导的抗肿瘤免疫反应
- 批准号:
10626281 - 财政年份:2023
- 资助金额:
$ 81.2万 - 项目类别:
Commercial translation of high-density carbon fiber electrode arrays for multi-modal analysis of neural microcircuits
用于神经微电路多模态分析的高密度碳纤维电极阵列的商业转化
- 批准号:
10761217 - 财政年份:2023
- 资助金额:
$ 81.2万 - 项目类别: