Mechanisms of coronary flow heterogeneity: Implications for coronary sinus occlusion therapy

冠状动脉血流异质性的机制:对冠状窦封堵治疗的影响

基本信息

项目摘要

ABSTRACT Significant spatial heterogeneity of coronary blood flow exists in the normal heart and it is exaggerated in coronary heart disease (CHD). Despite the significant clinical relevance of ischemia in CHD, the physical and biological determinants of spatial heterogeneity of coronary blood flow in health and disease remain uncertain. As a result, the mechanisms of some treatments, such as coronary sinus (CS) occlusion, pulsatile intermittent coronary sinus (CS) occlusion (PICSO) and selective auto-retroperfusion (SARP), are also not well understood. Advances in high-performance computing now make it possible to attempt anatomically realistic distributive mathematical models, where morphological details of the coronary vascular system are considered to truly elucidate the spatial heterogeneity of flow. Hence, our general objective in this proposal is to develop a validated full model of an autoregulated coronary circulation based on anatomically accurate 3D data in a dynamic model of the beating heart; one that integrates myocardium-vessel interaction (MVI) and vasoreactivity, can explain the spatial heterogeneity of coronary blood flow in ischemia, and elucidate the rationale for these CS interventions. The validated model will illuminate clinically significant mechanisms underlying the redistribution of coronary flow in ischemia and the mechanisms of CS interventions. Our central hypothesis is that regional differences in myocardial oxygen (O2) demand produce spatial heterogeneity in coronary flow and that ischemia increases flow heterogeneity by compromising MVI and autoregulation. Due to inherent difficulties associated with subendocardial measurements in vivo, the absence of a validated biophysical model of the coronary circulation has been a critical barrier to progress. Our proposal addresses this barrier and has the potential to advance scientific knowledge in multi-scale, multi-physics modeling and, ultimately, clinical practice in diagnosis and treatment of CHD. Accordingly, the three Specific Aims are to: 1) Develop an experimentally validated, physics- based computational framework coupling autoregulated coronary circulation with cardiac mechanics. 2) Elucidate the mechanical mechanisms of subendocardial vulnerability to ischemia. 3) Determine the mechanical mechanism of action of CSO, PICSO and SARP as well as factors affecting these treatments. This proposal takes an integrated approach (theory, computational models, and experiments) to elucidate the relationship between spatial heterogeneity of perfusion and cardiac mechanical work, autoregulation, and O2 consumption under pathological and treatment conditions. The proposed work will produce a novel computational framework that will be used to elucidate the key factors controlling subendocardial vulnerability in ischemia and the mechanism of actions of CSO, PICSO and SARP. The biophysical modeling framework will also serve as a foundation for constructing patient-specific heart model based on standard medical imaging to assist in diagnosis and treatment of CHD
摘要 冠状动脉血流在正常心脏中存在显著的空间不均一性,其在 冠心病(CHD)。尽管缺血在冠心病中具有重要的临床相关性,但物理和 健康和疾病中冠脉血流空间异质性的生物学决定因素仍不确定。 因此,一些治疗的机制,如冠状静脉窦(CS)闭塞,搏动性间歇 冠状静脉窦(CS)闭塞(PICSO)和选择性自体逆流(SARP)也不是很清楚。 高性能计算的进步现在使尝试解剖逼真的分布式成为可能 数学模型,其中冠状动脉血管系统的形态细节被认为是真正的 阐明流动的空间异质性。因此,我们在此提案中的总体目标是开发一个经过验证的 基于动态模型中解剖学上精确的3D数据的自动调节冠状动脉循环的完整模型 关于跳动的心脏;它整合了心肌-血管相互作用(MVI)和血管反应性,可以解释 缺血时冠状动脉血流的空间异质性,并阐明这些CS干预的理论基础。 经过验证的模型将阐明冠脉血流重新分布的临床重要机制。 以及CS干预的作用机制。我们的中心假设是 心肌氧(O2)需求导致冠脉血流的空间异质性,而缺血增加了冠脉血流 通过折衷MVI和自动调节实现异构性。由于与以下方面相关的固有困难 活体心内膜下测量:冠脉循环缺乏有效的生物物理模型 一直是取得进展的关键障碍。我们的建议解决了这一障碍,并具有推进的潜力 多尺度、多物理建模方面的科学知识,并最终掌握诊断和治疗方面的临床实践 冠心病的治疗。因此,三个具体目标是:1)开发一种经过实验验证的物理学-- 基于自动调节冠脉循环与心脏力学相结合的计算框架。2) 阐明心内膜下对缺血易损性的力学机制。3)确定机械 CSO、PICSO和SARP的作用机理及其影响因素。这项建议 采用综合方法(理论、计算模型和实验)来阐明两者之间的关系 血流灌注的空间异质性与心脏机械功、自动调节和耗氧量之间的关系 在病理和治疗条件下。拟议的工作将产生一种新的计算框架 这将被用来阐明控制缺血时心内膜下脆弱性的关键因素以及 CSO、PICSO和SARP的作用机制。生物物理建模框架还将作为 基于标准医学影像辅助诊断构建特定患者心脏模型的基础 和冠心病的治疗

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

GHASSAN S KASSAB其他文献

GHASSAN S KASSAB的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('GHASSAN S KASSAB', 18)}}的其他基金

Mathematical Model-Based Optimization of CRT Response in Ischemia
基于数学模型的缺血 CRT 反应优化
  • 批准号:
    10734486
  • 财政年份:
    2023
  • 资助金额:
    $ 68.11万
  • 项目类别:
Left Atrial Appendage Inversion to Prevent Stroke
左心耳倒转预防中风
  • 批准号:
    10006358
  • 财政年份:
    2020
  • 资助金额:
    $ 68.11万
  • 项目类别:
New Access Kit for Lymphatic Interventions
用于淋巴干预的新接入套件
  • 批准号:
    10079003
  • 财政年份:
    2020
  • 资助金额:
    $ 68.11万
  • 项目类别:
Roles of Ischemia and mechanical dyssynchrony in optimizing CRT responses
缺血和机械不同步在优化 CRT 反应中的作用
  • 批准号:
    9381294
  • 财政年份:
    2017
  • 资助金额:
    $ 68.11万
  • 项目类别:
Suction Device for Control and Accuracy of Transseptal Access
用于控制和精确进行房间隔进入的抽吸装置
  • 批准号:
    9346212
  • 财政年份:
    2017
  • 资助金额:
    $ 68.11万
  • 项目类别:
Roles of Ischemia and mechanical dyssynchrony in optimizing CRT responses
缺血和机械不同步在优化 CRT 反应中的作用
  • 批准号:
    9914123
  • 财政年份:
    2017
  • 资助金额:
    $ 68.11万
  • 项目类别:
Micro-Mechanical Role of Hypertension in Intimal Hyperplasia
高血压在内膜增生中的微机械作用
  • 批准号:
    8880455
  • 财政年份:
    2013
  • 资助金额:
    $ 68.11万
  • 项目类别:
Micro-Mechanical Role of Hypertension in Intimal Hyperplasia
高血压在内膜增生中的微机械作用
  • 批准号:
    8583495
  • 财政年份:
    2013
  • 资助金额:
    $ 68.11万
  • 项目类别:
Stabilization Device for Transseptal Access
用于房间隔接入的稳定装置
  • 批准号:
    8591527
  • 财政年份:
    2013
  • 资助金额:
    $ 68.11万
  • 项目类别:
CT-Based Diagnosis of Diffuse Coronary Artery Disease
基于 CT 的弥漫性冠状动脉疾病诊断
  • 批准号:
    8274323
  • 财政年份:
    2009
  • 资助金额:
    $ 68.11万
  • 项目类别:

相似海外基金

Transcriptional assessment of haematopoietic differentiation to risk-stratify acute lymphoblastic leukaemia
造血分化的转录评估对急性淋巴细胞白血病的风险分层
  • 批准号:
    MR/Y009568/1
  • 财政年份:
    2024
  • 资助金额:
    $ 68.11万
  • 项目类别:
    Fellowship
Combining two unique AI platforms for the discovery of novel genetic therapeutic targets & preclinical validation of synthetic biomolecules to treat Acute myeloid leukaemia (AML).
结合两个独特的人工智能平台来发现新的基因治疗靶点
  • 批准号:
    10090332
  • 财政年份:
    2024
  • 资助金额:
    $ 68.11万
  • 项目类别:
    Collaborative R&D
Acute senescence: a novel host defence counteracting typhoidal Salmonella
急性衰老:对抗伤寒沙门氏菌的新型宿主防御
  • 批准号:
    MR/X02329X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 68.11万
  • 项目类别:
    Fellowship
Cellular Neuroinflammation in Acute Brain Injury
急性脑损伤中的细胞神经炎症
  • 批准号:
    MR/X021882/1
  • 财政年份:
    2024
  • 资助金额:
    $ 68.11万
  • 项目类别:
    Research Grant
KAT2A PROTACs targetting the differentiation of blasts and leukemic stem cells for the treatment of Acute Myeloid Leukaemia
KAT2A PROTAC 靶向原始细胞和白血病干细胞的分化,用于治疗急性髓系白血病
  • 批准号:
    MR/X029557/1
  • 财政年份:
    2024
  • 资助金额:
    $ 68.11万
  • 项目类别:
    Research Grant
Combining Mechanistic Modelling with Machine Learning for Diagnosis of Acute Respiratory Distress Syndrome
机械建模与机器学习相结合诊断急性呼吸窘迫综合征
  • 批准号:
    EP/Y003527/1
  • 财政年份:
    2024
  • 资助金额:
    $ 68.11万
  • 项目类别:
    Research Grant
FITEAML: Functional Interrogation of Transposable Elements in Acute Myeloid Leukaemia
FITEAML:急性髓系白血病转座元件的功能研究
  • 批准号:
    EP/Y030338/1
  • 财政年份:
    2024
  • 资助金额:
    $ 68.11万
  • 项目类别:
    Research Grant
STTR Phase I: Non-invasive focused ultrasound treatment to modulate the immune system for acute and chronic kidney rejection
STTR 第一期:非侵入性聚焦超声治疗调节免疫系统以治疗急性和慢性肾排斥
  • 批准号:
    2312694
  • 财政年份:
    2024
  • 资助金额:
    $ 68.11万
  • 项目类别:
    Standard Grant
ロボット支援肝切除術は真に低侵襲なのか?acute phaseに着目して
机器人辅助肝切除术真的是微创吗?
  • 批准号:
    24K19395
  • 财政年份:
    2024
  • 资助金额:
    $ 68.11万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Acute human gingivitis systems biology
人类急性牙龈炎系统生物学
  • 批准号:
    484000
  • 财政年份:
    2023
  • 资助金额:
    $ 68.11万
  • 项目类别:
    Operating Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了