Plant Nutrient-Growth Signaling Network
植物养分生长信号网络
基本信息
- 批准号:10734306
- 负责人:
- 金额:$ 40.42万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-07-01 至 2027-08-31
- 项目状态:未结题
- 来源:
- 关键词:AgricultureAmino AcidsAnimal DiseasesAnimalsArabidopsisArchitectureBiochemicalBiologyBiomassCalmodulinCarbonCell NucleusComplexCoupledCouplingCytoplasmDevelopmentDevelopmental ProcessEcosystemEnvironmental ProtectionGene ExpressionGene Expression RegulationGenesGeneticGenetic ScreeningGenetic TranscriptionGenomicsGoalsGrowthGrowth FactorHealthHumanKnowledgeLateralLifeLinkLongevityMediatingMetabolicMetabolismMethodologyMolecularMouse-ear CressNitratesNitrogenNoduleNucleic AcidsNutrientOrganOrganismPhosphorylationPhosphotransferasesPhysiologicalPlanetsPlant RootsPlant ShootsPlantsPlayProductivityProtein KinaseProteinsRegulationReiterated GenesResearchResearch Project GrantsRoleShapesSignal TransductionSignaling MoleculeSirolimusSomatotropinSubgroupSystemSystems AnalysisTranscription CoactivatorTranscriptional RegulationTransducersTransgenic Organismsbiological systemschemical geneticscombinatorialexperimental studyfunctional genomicsgenetic analysisgenome-wideinnovationmutantnovelnutritionorgan growthplant growth/developmentprogramsprotein complexresponsesensorsuccesstranscription factortranscriptional reprogrammingtranscriptome
项目摘要
Nutrient signaling integrates and coordinates gene expression, metabolism, and growth. In
multicellular organisms, growth factors and hormones are ineffective in growth promotion without
the support of nutrient signaling networks. However, surprisingly little is known about the primary
nutrient signaling mechanisms in plants and animals. Plants play a central role in bridging the
conversion of inorganic nitrogen to organic nitrogen in the global nitrogen cycle by assimilating
inorganic nitrate to generate amino acids, nucleic acids, and organic nitrogen-carbon molecules,
which are essential to build and sustain lives from plants to humans. Despite the fundamental and
multifaceted regulatory roles of nitrate in gene expression, metabolism, growth, and development,
the molecular and cellular mechanisms of nitrate signaling remain largely elusive in multicellular
plants. Hampered by gene redundancy and mutant lethality, classical genetic screens had limited
success in identifying key nitrate signaling components in plants over the past two decades. By
taking integrated molecular, cellular, biochemical, functional genomic, chemical genetic, and
systems analyses, we have discovered a surprising molecular link between specific Ca2+-sensor
protein kinases (CPKs) and the NODULE INCEPTION-LIKE PROTEIN (NLP) transcription factors
as the primary regulators of the nitrate-signaling network in plants. Our research has demonstrated
the unique role of nitrate as a central signaling molecule in transcriptome reprogramming and
shoot-root coordination to shape organ biomass and architecture. We also recently discovered the
first plant nitrate sensor NLP7 with a dual function as a transcription activator, and the combinatorial
actions of multiple NLPs in controlling the primary nitrate responses (PNR) central to coordinate
plant root and shoot development. We propose to build on our new findings and innovative
experimental platforms to elucidate the molecular and cellular basis of the nutrient-growth network
that orchestrates system-wide transcription and modulates plant developmental processes. We will
integrate complementary strategies and methodologies to advance our understanding of nutrient
signaling mechanisms for three specific aims:
Aim1. Elucidate the function and action of the NLP7 nitrate sensor complex
Aim 2. Dissect the intracellular Ca2+ signaling mechanism triggered by nitrate
Aim 3. Uncover the CPK-TOR link in nitrate signaling
The proposed research to unravel the nitrate signaling mechanisms will establish new paradigms in
the action of nutrient sensor complexes, nutrient-mediated Ca2+ signaling, as well as transcriptional
and developmental regulation with sustained scientific impact beyond plant biology.
营养信号整合和协调基因表达、代谢和生长。在
项目成果
期刊论文数量(20)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Glucose-driven TOR-FIE-PRC2 signalling controls plant development.
- DOI:10.1038/s41586-022-05171-5
- 发表时间:2022-09
- 期刊:
- 影响因子:64.8
- 作者:Ye, Ruiqiang;Wang, Meiyue;Du, Hao;Chhajed, Shweta;Koh, Jin;Liu, Kun-hsiang;Shin, Jinwoo;Wu, Yue;Shi, Lin;Xu, Lin;Chen, Sixue;Zhang, Yijing;Sheen, Jen
- 通讯作者:Sheen, Jen
Dynamic Nutrient Signaling Networks in Plants.
- DOI:10.1146/annurev-cellbio-010521-015047
- 发表时间:2021-10-06
- 期刊:
- 影响因子:11.3
- 作者:Li L;Liu KH;Sheen J
- 通讯作者:Sheen J
Model-driven discovery of calcium-related protein-phosphatase inhibition in plant guard cell signaling
- DOI:10.1371/journal.pcbi.1007429
- 发表时间:2019-10-01
- 期刊:
- 影响因子:4.3
- 作者:Maheshwari, Parul;Du, Hao;Albert, Reka
- 通讯作者:Albert, Reka
Integration of nutrient, energy, light, and hormone signalling via TOR in plants.
- DOI:10.1093/jxb/erz028
- 发表时间:2019-02
- 期刊:
- 影响因子:6.9
- 作者:Yue Wu;Lin Shi;Lei Li;Liwen Fu;Yanlin Liu;Yan Xiong;J. Sheen
- 通讯作者:Yue Wu;Lin Shi;Lei Li;Liwen Fu;Yanlin Liu;Yan Xiong;J. Sheen
TOR and RPS6 transmit light signals to enhance protein translation in deetiolating Arabidopsis seedlings.
- DOI:10.1073/pnas.1809526115
- 发表时间:2018-12-11
- 期刊:
- 影响因子:11.1
- 作者:Chen GH;Liu MJ;Xiong Y;Sheen J;Wu SH
- 通讯作者:Wu SH
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JEN SHEEN其他文献
JEN SHEEN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JEN SHEEN', 18)}}的其他基金
相似海外基金
Double Incorporation of Non-Canonical Amino Acids in an Animal and its Application for Precise and Independent Optical Control of Two Target Genes
动物体内非规范氨基酸的双重掺入及其在两个靶基因精确独立光学控制中的应用
- 批准号:
BB/Y006380/1 - 财政年份:2024
- 资助金额:
$ 40.42万 - 项目类别:
Research Grant
Quantifying L-amino acids in Ryugu to constrain the source of L-amino acids in life on Earth
量化 Ryugu 中的 L-氨基酸以限制地球生命中 L-氨基酸的来源
- 批准号:
24K17112 - 财政年份:2024
- 资助金额:
$ 40.42万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Molecular recognition and enantioselective reaction of amino acids
氨基酸的分子识别和对映选择性反应
- 批准号:
23K04668 - 财政年份:2023
- 资助金额:
$ 40.42万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Basic research toward therapeutic strategies for stress-induced chronic pain with non-natural amino acids
非天然氨基酸治疗应激性慢性疼痛策略的基础研究
- 批准号:
23K06918 - 财政年份:2023
- 资助金额:
$ 40.42万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Molecular mechanisms how arrestins that modulate localization of glucose transporters are phosphorylated in response to amino acids
调节葡萄糖转运蛋白定位的抑制蛋白如何响应氨基酸而被磷酸化的分子机制
- 批准号:
23K05758 - 财政年份:2023
- 资助金额:
$ 40.42万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Design and Synthesis of Fluorescent Amino Acids: Novel Tools for Biological Imaging
荧光氨基酸的设计与合成:生物成像的新工具
- 批准号:
2888395 - 财政年份:2023
- 资助金额:
$ 40.42万 - 项目类别:
Studentship
Collaborative Research: RUI: Elucidating Design Rules for non-NRPS Incorporation of Amino Acids on Polyketide Scaffolds
合作研究:RUI:阐明聚酮化合物支架上非 NRPS 氨基酸掺入的设计规则
- 批准号:
2300890 - 财政年份:2023
- 资助金额:
$ 40.42万 - 项目类别:
Continuing Grant
Structurally engineered N-acyl amino acids for the treatment of NASH
用于治疗 NASH 的结构工程 N-酰基氨基酸
- 批准号:
10761044 - 财政年份:2023
- 资助金额:
$ 40.42万 - 项目类别:
Lifestyle, branched-chain amino acids, and cardiovascular risk factors: a randomized trial
生活方式、支链氨基酸和心血管危险因素:一项随机试验
- 批准号:
10728925 - 财政年份:2023
- 资助金额:
$ 40.42万 - 项目类别:
Single-molecule protein sequencing by barcoding of N-terminal amino acids
通过 N 端氨基酸条形码进行单分子蛋白质测序
- 批准号:
10757309 - 财政年份:2023
- 资助金额:
$ 40.42万 - 项目类别:














{{item.name}}会员




