Engineering Yeast towards High Titer Production of Monoterpene Indole Alkaloid Natural Products
工程酵母用于高滴度生产单萜吲哚生物碱天然产物
基本信息
- 批准号:10735587
- 负责人:
- 金额:$ 36.28万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-07-01 至 2028-03-31
- 项目状态:未结题
- 来源:
- 关键词:AchievementAnabolismBehaviorBiologicalBiological ModelsCRISPR interferenceCRISPR-mediated transcriptional activationCell SeparationCellsChemicalsChemistryCloningClustered Regularly Interspaced Short Palindromic RepeatsCollaborationsCollectionComplexDataDerivation procedureDirected Molecular EvolutionDiseaseEncapsulatedEngineeringEnzymatic BiochemistryEnzymesEvaluationFamilyFluorescenceGenesGenetic ScreeningGenomeGrantGrowthHydrogelsIbogaineIndole AlkaloidsInvestigationLettersLiquid substanceMaintenanceMetabolicMetabolic BiotransformationMethodsMicrofluidic MicrochipsMicrofluidicsMonoterpenesMutagenesisNatural ProductsOpiate AddictionOpioidOrganismPathway interactionsPharmaceutical PreparationsPharmacologic SubstancePhytochemicalPlant alkaloidPlantsPositioning AttributeProcessProductionPsychotropic DrugsReporterReportingResearch Project GrantsSaccharomyces cerevisiaeSignaling MoleculeSortingSourceSystemTechnologyTherapeuticVinblastineYeastsaddictiongenome wide screengenome-wideglucosidasehealthy lifestylehigh throughput screeningimprovedinterestmicrobialmicrobial hostmutantnanobiotechnologynovel strategiesparticlepharmacologicplant metabolitespromoterprophylacticreconstitutionreconstructionscreeningsmall moleculestrictosidinesuccesssynthetic biologytool
项目摘要
ABSTRACT
Reconstruction of plant natural product pathways in genetically well-characterized microbial
organisms such as Saccharomyces cerevisiae is a sustainable and scalable method of producing
high value pharmaceutical compounds. The family of monoterpene indole alkaloids (MIAs)
represent a diverse collection of natural product with significant biological activities. MIAs are
indispensable pharmaceutical ingredients, but are also expensive and difficult to isolate from plant
producers. In the previous grant cycle, we successfully engineered yeast strains that can produce
strictosidine, the universal precursor to MIAs, at titers exceeding 100 mg/L. In this proposal, we
will engineer the downstream steps from strictosidine to overcome key metabolic bottlenecks, and
develop new yeast based-technologies for engineering heterologous natural product pathways.
In collaboration with the Di Carlo lab, we will deploy PicoShell enabled cell sorting to enable high
throughput screening of MIA pathways. The PicoShell technology allows microfluidic-based, high
throughput single-cell encapsulation from liquid culture. Encapsulated yeast cells can be grown
in bulk in a monoclonal fashion and produce the compound of interest. PicoShell effectively
amplifies reporter molecule signal from single yeast cells and can be sorted with FACS based on
scatter (growth rate) and fluorescence (titer). Such workflow enables the merging of yeast
pathway engineering with technologies that require high throughput screening, including directed
evolution and genome wide CRISPRi screening. Our preliminary efforts have shown that a
fluorescent natural product in the MIA pathway can serve as a reporter for the efficiency of the
downstream steps during PicoShell enabled FACS sorting. This collaborative proposal will
leverage Tang lab’s expertise in natural product biosynthesis with the new nanobiotechnology
tools developed for yeast by the Di Carlo Lab. This will pave the way for complete reconstitution
of important MIAs at high titers in yeast, as well as establishing new tools for yeast synthetic
biology. Together we will address three aims: 1) overcoming key bottleneck step in post-
strictosidine steps, specifically the low efficiency of strictosidine glucosidase (SGD); 2) host
engineering with CRISPR interference and activation to increase strictosidine levels, using both
rational and genome wide screening enabled by PicoShells; and 3) complete biosynthesis of
complex MIAs ibogaine and mitragynine, two psychoactive MIAs that have generated significant
interests as potential treatment for opioid addiction.
摘要
在基因良好表征的微生物中重建植物天然产物途径
生物体如酿酒酵母是一种可持续和可扩展的生产方法,
高价值药物化合物。单萜吲哚生物碱(MIA)
代表了具有显著生物活性的天然产物的多样性集合。MIA是
它们是不可或缺的药物成分,但也是昂贵的,并且难以从植物中分离
生产商在上一个资助周期中,我们成功地改造了酵母菌株,
strictosidine,MIA的通用前体,滴度超过100 mg/L。在本提案中,我们
将设计strictosidine的下游步骤,以克服关键的代谢瓶颈,
开发基于酵母的新技术,用于工程化异源天然产物途径。
与Di Carlo实验室合作,我们将部署PicoShell支持的细胞分选,
MIA途径的通量筛选。PicoShell技术允许基于微流体的、高
从液体培养物中生产单细胞包封。包封的酵母细胞可以生长
以单克隆的方式批量生产并产生感兴趣的化合物。PicoShell有效地
扩增来自单个酵母细胞的报告分子信号,并且可以基于
散射(生长速率)和荧光(滴度)。这样的工作流程使得酵母的合并
需要高通量筛选技术的途径工程,包括定向
进化和全基因组CRISPRi筛选。我们的初步工作表明,
MIA途径中的荧光天然产物可以作为MIA途径的效率的报告基因。
在PicoShell使能的FACS分选期间的下游步骤。该合作提案将
利用Tang实验室在天然产物生物合成方面的专业知识,
迪卡罗实验室为酵母开发的工具。这将为完全重组铺平道路
重要的MIA在酵母中的高滴度,以及建立新的工具,酵母合成
生物学我们将共同努力实现三个目标:1)克服后一阶段的关键瓶颈,
strictosidine步骤,特别是strictosidine葡萄糖苷酶(SGD)的低效率; 2)宿主
用CRISPR干扰和激活进行工程化,以增加strictosidine水平,
PicoShells实现了合理的全基因组筛选;以及3)完整的生物合成
复杂的MIA伊波替尼和米曲宁,两种精神活性MIA,产生了显着的
作为阿片类药物成瘾的潜在治疗方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dino Di Carlo其他文献
Dino Di Carlo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dino Di Carlo', 18)}}的其他基金
Hydrogel nanovial technology for single-cell sorting based on extracellular vesicle production
基于细胞外囊泡产生的单细胞分选水凝胶纳米瓶技术
- 批准号:
10411907 - 财政年份:2021
- 资助金额:
$ 36.28万 - 项目类别:
Enhancing the potency of mesenchymal stem cell therapies for kidney diseases using lab-on-a-particle technology
使用粒子实验室技术增强间充质干细胞治疗肾脏疾病的效力
- 批准号:
10373803 - 财政年份:2021
- 资助金额:
$ 36.28万 - 项目类别:
Lab on a particle technology for functional screening of therapeutic cells
用于治疗细胞功能筛选的粒子技术实验室
- 批准号:
10272940 - 财政年份:2021
- 资助金额:
$ 36.28万 - 项目类别:
Hydrogel nanovial technology for single-cell sorting based on extracellular vesicle production
基于细胞外囊泡产生的单细胞分选水凝胶纳米瓶技术
- 批准号:
10193200 - 财政年份:2021
- 资助金额:
$ 36.28万 - 项目类别:
Caltech/UCLA Individualized Theranostic Engineering to Advance Metabolic System (iTEAM)
加州理工学院/加州大学洛杉矶分校个性化治疗诊断工程促进代谢系统 (iTEAM)
- 批准号:
10213026 - 财政年份:2020
- 资助金额:
$ 36.28万 - 项目类别:
Caltech/UCLA Individualized Theranostic Engineering to Advance Metabolic System (iTEAM)
加州理工学院/加州大学洛杉矶分校个性化治疗诊断工程促进代谢系统 (iTEAM)
- 批准号:
10440285 - 财政年份:2020
- 资助金额:
$ 36.28万 - 项目类别:
Caltech/UCLA Individualized Theranostic Engineering to Advance Metabolic System (iTEAM)
加州理工学院/加州大学洛杉矶分校个性化治疗诊断工程促进代谢系统 (iTEAM)
- 批准号:
10683974 - 财政年份:2020
- 资助金额:
$ 36.28万 - 项目类别:
Training the next generation of leaders in biomedical engineering design
培训下一代生物医学工程设计领导者
- 批准号:
10599275 - 财政年份:2019
- 资助金额:
$ 36.28万 - 项目类别:
Training the next generation of leaders in biomedical engineering design
培训下一代生物医学工程设计领导者
- 批准号:
10428473 - 财政年份:2019
- 资助金额:
$ 36.28万 - 项目类别:
Force phenotyping of airway smooth muscle cells to develop novel asthma therapies
强制气道平滑肌细胞表型分析以开发新型哮喘疗法
- 批准号:
9452964 - 财政年份:2017
- 资助金额:
$ 36.28万 - 项目类别:
相似海外基金
Bone-Adipose Interactions During Skeletal Anabolism
骨骼合成代谢过程中骨-脂肪相互作用
- 批准号:
10590611 - 财政年份:2022
- 资助金额:
$ 36.28万 - 项目类别:
Bone-Adipose Interactions During Skeletal Anabolism
骨骼合成代谢过程中的骨-脂肪相互作用
- 批准号:
10706006 - 财政年份:2022
- 资助金额:
$ 36.28万 - 项目类别:
Bone-Adipose Interactions During Skeletal Anabolism
骨骼合成代谢过程中骨-脂肪相互作用
- 批准号:
10368975 - 财政年份:2021
- 资助金额:
$ 36.28万 - 项目类别:
BCCMA: Foundational Research to Act Upon and Resist Conditions Unfavorable to Bone (FRACTURE CURB): Combined long-acting PTH and calcimimetics actions on skeletal anabolism
BCCMA:针对和抵抗不利于骨骼的条件的基础研究(遏制骨折):长效 PTH 和拟钙剂联合作用对骨骼合成代谢的作用
- 批准号:
10365254 - 财政年份:2021
- 资助金额:
$ 36.28万 - 项目类别:
Bone-Adipose Interactions During Skeletal Anabolism
骨骼合成代谢过程中骨-脂肪相互作用
- 批准号:
10202896 - 财政年份:2021
- 资助金额:
$ 36.28万 - 项目类别:
BCCMA: Foundational Research to Act Upon and Resist Conditions Unfavorable to Bone (FRACTURE CURB): Combined long-acting PTH and calcimimetics actions on skeletal anabolism
BCCMA:针对和抵抗不利于骨骼的条件的基础研究(遏制骨折):长效 PTH 和拟钙剂联合作用对骨骼合成代谢的作用
- 批准号:
10531570 - 财政年份:2021
- 资助金额:
$ 36.28万 - 项目类别:
Dissecting molecular mechanisms implicated in age- and osteoarthritis-related decline in anabolism in articular cartilage
剖析与年龄和骨关节炎相关的关节软骨合成代谢下降有关的分子机制
- 批准号:
10541847 - 财政年份:2019
- 资助金额:
$ 36.28万 - 项目类别:
Dissecting molecular mechanisms implicated in age- and osteoarthritis-related decline in anabolism in articular cartilage
剖析与年龄和骨关节炎相关的关节软骨合成代谢下降有关的分子机制
- 批准号:
10319573 - 财政年份:2019
- 资助金额:
$ 36.28万 - 项目类别:
Dissecting molecular mechanisms implicated in age- and osteoarthritis-related decline in anabolism in articular cartilage
剖析与年龄和骨关节炎相关的关节软骨合成代谢下降有关的分子机制
- 批准号:
10062790 - 财政年份:2019
- 资助金额:
$ 36.28万 - 项目类别:
Promotion of NAD+ anabolism to promote lifespan
促进NAD合成代谢以延长寿命
- 批准号:
DE170100628 - 财政年份:2017
- 资助金额:
$ 36.28万 - 项目类别:
Discovery Early Career Researcher Award














{{item.name}}会员




