A cell-type specific explanation of visual decision circuits.

视觉决策电路的细胞类型特定解释。

基本信息

项目摘要

Abstract The main goal of my laboratory is to understand the neural circuits that support perceptual decision-making. Recent efforts to understand microcircuits within decision-making areas have been fruitful, thanks in part to the ability to identify and manipulate distinct types of inhibitory neurons. Our understanding how distinct types of excitatory pyramidal neurons (PyNs) shape circuits has lagged behind. This lack of understanding is particularly problematic for decision circuits in which PyN type can determine the long-range project target of neurons within an area. To surmount this problem, we propose to compare the contribution of distinct PyN types to key decision- making computations: working memory and evidence accumulation. We will measure and manipulate neural activity of intratelencephalic (IT) and pyramidal tract (PT) neurons in animals trained to make decisions about the stochastically-varying spatial position of visual gratings. We seek to understand how PT and IT neurons in multiple neural structures collectively support the computations needed for decision-making. In Aim 1, we will use widefield calcium imaging to generate cortex-wide activity maps for each PyN type. We will compare the spatial and temporal patterns at multiple scales, and will deploy quantitative analyses to identify candidate regions for decision-making computations. In Aim 2, we will measure the activity of single cells within these regions using 2-photon imaging. We will use a generalized linear model (GLM) to estimate the extent to which single neurons are modulated by relevant variables, such as stimulus events, choice, and movements. We will compare these across PT and IT neurons. The same models will estimate the magnitude and time course of “coupling” between neurons, which we will compare across PyN types and regions. Shorter coupling time courses are expected for neurons that support sensory encoding, while longer coupling time courses are expected for neurons that support working memory. We will use these observations to generate a new, biologically realistic model that includes PyN types in multiple areas working together to support decision-making computations. In Aim 3, we will evaluate a causal role for PyN types using cell-type specific optogenetic inactivation. We will compare multiple aspects of decision-making behavior on trials with vs. without inactivation. For example, we will determine how inactivation affects decision accuracy, and the extent to which this depends on when inactivation occurs. We will also determine how inactivation impacts the animal’s ability to accumulate sensory evidence and/or drives movements that can be detected with a classifier trained on video data. We will use this data to “stress test” the model, evaluating whether inactivations in our artificial network generate the same changes as inactivations in the real brain. If not, we will update and re-test the model, creating a tight loop between experiments and modeling. Taken together, the proposed work will advance our understanding of decision-making beyond the non-specific approach that has limited a mechanistic understanding thus far.
摘要 我实验室的主要目标是了解支持感知决策的神经回路。 最近在理解决策领域内的微电路方面的努力取得了丰硕成果,这部分归功于 识别和操纵不同类型的抑制性神经元的能力。我们了解到不同类型的 兴奋性锥体神经元(PyN)形状电路已经落后。这种不理解尤其 这对于其中PyN类型可以确定内部神经元的远程项目目标的决策电路是有问题的。 一个区域。为了克服这个问题,我们建议比较不同的PyN类型对关键决策的贡献, 进行计算:工作记忆和证据积累。我们将测量和操纵神经 在接受训练的动物中,端脑内(IT)和锥体束(PT)神经元的活动, 视觉光栅的随机变化的空间位置。我们试图了解PT和IT神经元如何在 多个神经结构共同支持决策所需的计算。在目标1中,我们 使用宽视野钙成像来生成每种PyN类型的皮层范围活动图。我们将比较 并将部署定量分析, 用于决策计算的区域。在目标2中,我们将测量这些细胞中单细胞的活性。 使用双光子成像的区域。我们将使用广义线性模型(GLM)来估计 单个神经元受到相关变量的调节,例如刺激事件、选择和运动。我们将 比较PT和IT神经元之间的差异。同样的模型将估计 神经元之间的“耦合”,我们将在PyN类型和区域之间进行比较。更短的耦合时间 支持感觉编码的神经元预计会有更长的耦合时间, 支持工作记忆的神经元。我们将利用这些观察结果来生成一个新的, 一个生物现实模型,包括多个领域的PyN类型,共同支持决策制定 计算。在目标3中,我们将使用细胞类型特异性光遗传学方法评估PyN类型的因果作用。 失活我们将比较有与无失活试验的决策行为的多个方面。 例如,我们将确定失活如何影响决策准确性,以及这在多大程度上取决于 当失活发生时打开。我们还将确定失活如何影响动物的积累能力, 感官证据和/或驱动可以用在视频数据上训练的分类器检测的运动。我们将 使用这些数据对模型进行“压力测试”,评估我们的人工网络中的失活是否会产生 与真实的大脑中的失活相同的变化。如果没有,我们将更新并重新测试模型,创建一个紧密的循环 在实验和建模之间。总的来说,拟议的工作将促进我们对以下问题的理解: 决策超越了非特定的方法,限制了机械的理解到目前为止。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Perceptual Decision-Making: A Field in the Midst of a Transformation.
  • DOI:
    10.1016/j.neuron.2018.10.017
  • 发表时间:
    2018-10-24
  • 期刊:
  • 影响因子:
    16.2
  • 作者:
    Najafi F;Churchland AK
  • 通讯作者:
    Churchland AK
Decision-making behaviors: weighing ethology, complexity, and sensorimotor compatibility.
  • DOI:
    10.1016/j.conb.2017.11.001
  • 发表时间:
    2018-04
  • 期刊:
  • 影响因子:
    5.7
  • 作者:
    Juavinett AL;Erlich JC;Churchland AK
  • 通讯作者:
    Churchland AK
Lapses in perceptual decisions reflect exploration.
  • DOI:
    10.7554/elife.55490
  • 发表时间:
    2021-01-11
  • 期刊:
  • 影响因子:
    7.7
  • 作者:
    Pisupati S;Chartarifsky-Lynn L;Khanal A;Churchland AK
  • 通讯作者:
    Churchland AK
Pyramidal cell types drive functionally distinct cortical activity patterns during decision-making.
  • DOI:
    10.1038/s41593-022-01245-9
  • 发表时间:
    2023-03
  • 期刊:
  • 影响因子:
    25
  • 作者:
    Musall, Simon;Sun, Xiaonan R. R.;Mohan, Hemanth;An, Xu;Gluf, Steven;Li, Shu-Jing;Drewes, Rhonda;Cravo, Emma;Lenzi, Irene;Yin, Chaoqun;Kampa, Bjoern M.;Churchland, Anne K. K.
  • 通讯作者:
    Churchland, Anne K. K.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

ANNE KATHRYN CHURCHLAND其他文献

ANNE KATHRYN CHURCHLAND的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('ANNE KATHRYN CHURCHLAND', 18)}}的其他基金

Modularization and integration of the International Brain Laboratory spike-sorting pipeline into SpikeInterface
将国际脑实验室尖峰分选流程模块化并集成到 SpikeInterface 中
  • 批准号:
    10609320
  • 财政年份:
    2022
  • 资助金额:
    $ 38.68万
  • 项目类别:
Learning as a window into how internal states influence decision-making
学习作为了解内部状态如何影响决策的窗口
  • 批准号:
    10462000
  • 财政年份:
    2021
  • 资助金额:
    $ 38.68万
  • 项目类别:
State-dependent Decision-making in Brainwide Neural Circuits
全脑神经回路中的状态相关决策
  • 批准号:
    10669895
  • 财政年份:
    2021
  • 资助金额:
    $ 38.68万
  • 项目类别:
State-dependent Decision-making in Brainwide Neural Circuits
全脑神经回路中的状态相关决策
  • 批准号:
    10669676
  • 财政年份:
    2021
  • 资助金额:
    $ 38.68万
  • 项目类别:
State-dependent Decision-making in Brainwide Neural Circuits
全脑神经回路中的状态相关决策
  • 批准号:
    10461991
  • 财政年份:
    2021
  • 资助金额:
    $ 38.68万
  • 项目类别:
Learning as a window into how internal states influence decision-making
学习作为了解内部状态如何影响决策的窗口
  • 批准号:
    10669700
  • 财政年份:
    2021
  • 资助金额:
    $ 38.68万
  • 项目类别:
State-dependent Decision-making in Brainwide Neural Circuits
全脑神经回路中的状态相关决策
  • 批准号:
    10294668
  • 财政年份:
    2021
  • 资助金额:
    $ 38.68万
  • 项目类别:
Learning as a window into how internal states influence decision-making
学习作为了解内部状态如何影响决策的窗口
  • 批准号:
    10294676
  • 财政年份:
    2021
  • 资助金额:
    $ 38.68万
  • 项目类别:
State-dependent Decision-making in Brainwide Neural Circuits
全脑神经回路中的状态相关决策
  • 批准号:
    10531784
  • 财政年份:
    2021
  • 资助金额:
    $ 38.68万
  • 项目类别:
The role of parietal cortex in multisensory decision-making
顶叶皮层在多感官决策中的作用
  • 批准号:
    8419054
  • 财政年份:
    2013
  • 资助金额:
    $ 38.68万
  • 项目类别:

相似海外基金

RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
  • 批准号:
    2327346
  • 财政年份:
    2024
  • 资助金额:
    $ 38.68万
  • 项目类别:
    Standard Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
  • 批准号:
    2312555
  • 财政年份:
    2024
  • 资助金额:
    $ 38.68万
  • 项目类别:
    Standard Grant
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
  • 批准号:
    BB/Z514391/1
  • 财政年份:
    2024
  • 资助金额:
    $ 38.68万
  • 项目类别:
    Training Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
  • 批准号:
    ES/Z502595/1
  • 财政年份:
    2024
  • 资助金额:
    $ 38.68万
  • 项目类别:
    Fellowship
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
  • 批准号:
    ES/Z000149/1
  • 财政年份:
    2024
  • 资助金额:
    $ 38.68万
  • 项目类别:
    Research Grant
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
  • 批准号:
    23K24936
  • 财政年份:
    2024
  • 资助金额:
    $ 38.68万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
  • 批准号:
    2901648
  • 财政年份:
    2024
  • 资助金额:
    $ 38.68万
  • 项目类别:
    Studentship
ERI: Developing a Trust-supporting Design Framework with Affect for Human-AI Collaboration
ERI:开发一个支持信任的设计框架,影响人类与人工智能的协作
  • 批准号:
    2301846
  • 财政年份:
    2023
  • 资助金额:
    $ 38.68万
  • 项目类别:
    Standard Grant
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
  • 批准号:
    488039
  • 财政年份:
    2023
  • 资助金额:
    $ 38.68万
  • 项目类别:
    Operating Grants
How motor impairments due to neurodegenerative diseases affect masticatory movements
神经退行性疾病引起的运动障碍如何影响咀嚼运动
  • 批准号:
    23K16076
  • 财政年份:
    2023
  • 资助金额:
    $ 38.68万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了