New Statistical Methods for Medical Signals and Images

医学信号和图像的新统计方法

基本信息

  • 批准号:
    10734451
  • 负责人:
  • 金额:
    $ 49.69万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    1996
  • 资助国家:
    美国
  • 起止时间:
    1996-09-10 至 2027-08-31
  • 项目状态:
    未结题

项目摘要

The analysis of large datasets from computational biology and medicine represents an important chal- lenge for Statisticians. These biomedical data typically have a large number of correlated features with rel- atively weak signals for predicting phenotypes of interest. Examples include DNA sequences and GWAS, mass-spectra, RNAseq and protein arrays. The broad goal of this ongoing three-investigator grant is to de- velop and study statistical techniques that enhance the analysis and interpretation of these data. The team combines experience in statistical modeling, algorithmic development, and theoretical analysis. Through four Specific Aims, the new projects focus on development and validation of state-of-the art statistical methods to use structure to learn from high-dimensional data to advance human population health. 1. Cluster-aware supervised learning. In “omics” settings, there are a large number of features that often exhibit sizable correlations. This aim proposes the Cluster-Aware Lasso, a statistical method which fits a lasso regression model that adaptively selects clusters of features using a hierarchical clustering-based approach, enforcing a notion of a tree-respecting solution. It will be validated on gene expression and mass spec data, and extensions to other supervised learning settings studied. 2. SNP Selection from GWAS summary statistics with FDR control. Genome-wide association studies often report findings for phenotypes in terms of summary statistics for individual SNPs. This aim develops a statistical method to identify causal SNPs while controlling the False Discovery Rate. It uses an estimate of the SNP correlation matrix based on linkage-disequilibrium data, an approximate multivariate lasso fit and model-X knockoff techniques, and will be validated on UK Biobank data. 3. Inference for high-dimensional genetic covariance matrices. Statistical estimation of large genetic covariance matrices is needed to learn whether genetic variation at phenome-wide scale is concen- trated in relatively few trait combinations, with implications for evolution and pleiotropy. This aim will explore biases in Restricted Maximum Likelihood and study alternative parametric and nonparametric methods of estimation both by asymptotic approximation and simulation. 4. Mixture lasso for multiple instance learning. It is often known whether a person is sick, but not which of their immune cells are responding to a particular illness, nor which parts of biopsied tissue are diseased. There is a label only for each patient, but data instances on a more granular level. The aim is to predict the labels of each data instance. This project proposes a supervised learning method based on mixtures and the lasso, with validation on viral sequence and mass spectrometry data. Working together, the investigators and their students will implement the new statistical tools into publi- cally available software, following a pattern established in earlier cycles of this grant.
对来自计算生物学和医学的大型数据集的分析是一个重要的挑战

项目成果

期刊论文数量(16)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Post model-fitting exploration via a "Next-Door" analysis.
Significant sparse polygenic risk scores across 813 traits in UK Biobank.
  • DOI:
    10.1371/journal.pgen.1010105
  • 发表时间:
    2022-03
  • 期刊:
  • 影响因子:
    4.5
  • 作者:
    Tanigawa Y;Qian J;Venkataraman G;Justesen JM;Li R;Tibshirani R;Hastie T;Rivas MA
  • 通讯作者:
    Rivas MA
Roy's largest root under rank-one perturbations: the complex valued case and applications.
罗伊在一级扰动下的最大根源:复杂的有价值的案例和应用。
  • DOI:
    10.1016/j.jmva.2019.05.009
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    1.6
  • 作者:
    Dharmawansa,Prathapasinghe;Nadler,Boaz;Shwartz,Ofer
  • 通讯作者:
    Shwartz,Ofer
Reluctant Generalised Additive Modelling.
  • DOI:
    10.1111/insr.12429
  • 发表时间:
    2020-12
  • 期刊:
  • 影响因子:
    2
  • 作者:
    Tay, J. Kenneth;Tibshirani, Robert
  • 通讯作者:
    Tibshirani, Robert
Asymptotics of eigenstructure of sample correlation matrices for high-dimensional spiked models.
  • DOI:
    10.5705/ss.202019.0052
  • 发表时间:
    2021-04
  • 期刊:
  • 影响因子:
    1.4
  • 作者:
    Morales-Jimenez D;Johnstone IM;McKay MR;Yang J
  • 通讯作者:
    Yang J
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Iain M Johnstone其他文献

Iain M Johnstone的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Iain M Johnstone', 18)}}的其他基金

NEW STATISTICAL METHODS FOR MEDICAL SIGNALS AND IMAGES
医疗信号和图像的新统计方法
  • 批准号:
    6173011
  • 财政年份:
    1996
  • 资助金额:
    $ 49.69万
  • 项目类别:
New Statistical Methods for Medical Signals and Images
医学信号和图像的新统计方法
  • 批准号:
    6751995
  • 财政年份:
    1996
  • 资助金额:
    $ 49.69万
  • 项目类别:
NEW STATISTICAL METHODS FOR MEDICAL SIGNALS AND IMAGES
医疗信号和图像的新统计方法
  • 批准号:
    2909842
  • 财政年份:
    1996
  • 资助金额:
    $ 49.69万
  • 项目类别:
New Statistical Methods for Medical Signals and Images
医学信号和图像的新统计方法
  • 批准号:
    10440353
  • 财政年份:
    1996
  • 资助金额:
    $ 49.69万
  • 项目类别:
New Statistical Methods for Medical Signals and Images
医学信号和图像的新统计方法
  • 批准号:
    7640576
  • 财政年份:
    1996
  • 资助金额:
    $ 49.69万
  • 项目类别:
New Statistical Methods for Medical Signals and Images
医学信号和图像的新统计方法
  • 批准号:
    6903621
  • 财政年份:
    1996
  • 资助金额:
    $ 49.69万
  • 项目类别:
NEW STATISTICAL METHODS FOR MEDICAL SIGNALS AND IMAGES
医疗信号和图像的新统计方法
  • 批准号:
    6513032
  • 财政年份:
    1996
  • 资助金额:
    $ 49.69万
  • 项目类别:
NEW STATISTICAL METHODS FOR MEDICAL SIGNALS AND IMAGES
医疗信号和图像的新统计方法
  • 批准号:
    6376306
  • 财政年份:
    1996
  • 资助金额:
    $ 49.69万
  • 项目类别:
New statistical methods for medical signals and images
医学信号和图像的新统计方法
  • 批准号:
    8186445
  • 财政年份:
    1996
  • 资助金额:
    $ 49.69万
  • 项目类别:
New Statistical Methods for Medical Signals and Images
医学信号和图像的新统计方法
  • 批准号:
    6687387
  • 财政年份:
    1996
  • 资助金额:
    $ 49.69万
  • 项目类别:

相似海外基金

Cultivating Diversity Awareness in Japanese Med Schools with a foreign Standardized Patient program
通过外国标准化患者计划培养日本医学院的多样性意识
  • 批准号:
    24K13361
  • 财政年份:
    2024
  • 资助金额:
    $ 49.69万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Multi-dimensional quantum-enabled sub-THz Space-Borne ISAR sensing for space domain awareness and critical infrastructure monitoring - SBISAR
用于空间域感知和关键基础设施监测的多维量子亚太赫兹星载 ISAR 传感 - SBISAR
  • 批准号:
    EP/Y022092/1
  • 财政年份:
    2024
  • 资助金额:
    $ 49.69万
  • 项目类别:
    Research Grant
Postdoctoral Fellowship: STEMEdIPRF: Examining how faculty awareness of systemic barriers and growth mindset influences students' belonging, self-efficacy, and success in STEM
博士后奖学金:STEMEdIPRF:研究教师对系统性障碍和成长心态的认识如何影响学生的归属感、自我效能和 STEM 成功
  • 批准号:
    2327319
  • 财政年份:
    2024
  • 资助金额:
    $ 49.69万
  • 项目类别:
    Standard Grant
I-Corps: Virtual Reality Training Platform for Increasing Awareness of Unconscious Bias in Industry Decision-Making
I-Corps:虚拟现实培训平台,用于提高行业决策中无意识偏见的意识
  • 批准号:
    2402141
  • 财政年份:
    2024
  • 资助金额:
    $ 49.69万
  • 项目类别:
    Standard Grant
DroneOps VR - Virtual Reality Training for Drone Hazard Awareness and Flight Planning
DroneOps VR - 无人机危险意识和飞行计划的虚拟现实培训
  • 批准号:
    10061885
  • 财政年份:
    2023
  • 资助金额:
    $ 49.69万
  • 项目类别:
    Collaborative R&D
Evidence-Based Dialogue to Promote Sun Protection, Foster a Community of Concern and Increase Awareness for Skin Cancers in Canada.
在加拿大开展基于证据的对话,以促进防晒、培养关注社区并提高对皮肤癌的认识。
  • 批准号:
    485622
  • 财政年份:
    2023
  • 资助金额:
    $ 49.69万
  • 项目类别:
    Miscellaneous Programs
The 'Long COVID Education and Awareness Hub': A digitally integrated resource for patients, caregivers, and health care providers
“长期新冠病毒教育和意识中心”:为患者、护理人员和医疗保健提供者提供的数字集成资源
  • 批准号:
    495218
  • 财政年份:
    2023
  • 资助金额:
    $ 49.69万
  • 项目类别:
A smartphone rip-detection tool to improve rip current awareness
智能手机撕裂检测工具,可提高撕裂电流感知能力
  • 批准号:
    LP220200780
  • 财政年份:
    2023
  • 资助金额:
    $ 49.69万
  • 项目类别:
    Linkage Projects
Development of Informatics Materials with an Awareness of the High School-University connection and a Learning Support Environment for Data-Driven Instruction
开发具有高中与大学联系意识的信息学材料和数据驱动教学的学习支持环境
  • 批准号:
    23H01019
  • 财政年份:
    2023
  • 资助金额:
    $ 49.69万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Mindfulness according to the rNying ma School of Tibetan Buddhism: Philological Research on Its Scriptures, Exegesis, and Philosophy of Self-Awareness
藏传佛教宁玛派的正念:其经典、训诂和自我意识哲学的文字学研究
  • 批准号:
    23K00048
  • 财政年份:
    2023
  • 资助金额:
    $ 49.69万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了