Statistical Analysis Of Image Features
图像特征统计分析
基本信息
- 批准号:6818455
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:
- 资助国家:美国
- 起止时间:至
- 项目状态:未结题
- 来源:
- 关键词:alcoholic beverage consumption alcoholism /alcohol abuse bioimaging /biomedical imaging brain metabolism cerebrovascular imaging /visualization clinical research digital imaging functional magnetic resonance imaging glucose metabolism human subject image processing information display mathematical model method development positron emission tomography statistics /biometry
项目摘要
The aim of this project is the development of statistical methods that either take into account interpixel correlation, or apply global image transform methods that permit an analysis of uncorrelated image components. Of typical interest is the investigation of differences between either images from individual subjects acquired under different experimental conditions, or between average images of subjects from different diagnostic groups. Three different statistical methods have been developed, based on the Fourier transform, the wavelet transform, and the theory of Gaussian random fields in the spatial domain. In the Fourier domain, the statistics at different wave numbers are uncorrelated and inference tests can be performed unencumbered by spatial correlations. This method provides for rigorous statistical tests with well-known properties and interpretations, but results in spatially uniform image blurring and may yield relatively poor spatial localization. For the wavelet-transform based analysis, a mathematically rigorous theory has been established that applies parametric statistical tests on wavelet coefficients and results in estimates of local image differences by inverse wavelet transform of only significant coefficients. The method provides for good spatial localization and the implementation of locally adaptive image smoothing, but there has not been much experience accumulated for the interpretation of test outcomes and estimates of image differences. Gaussian random field analysis has good spatial localization properties and permits the investigation of correlations with external variables (e.g., age), but it results in spatially uniform image blurring and does not provide for statistically reconstructed estimates of images differences (either across group or conditions). All three methods have been applied to the analysis of PET images from normal and alcoholic subjects and have identified significant differences in generally the same brain regions. Gaussian random field analysis was able to demonstrate in PET images from alcoholics a significant negative correlation of glucose utilization in the pre-frontal cortex with age. Current research on these topics includes the development of a 1-D Gaussian random field method to analyze fMRI time series data. This methodology can be used to analyze fMRI data acquired from experiments designed to incorporate a long (that is long enough, as determined experimentally, to estimate the variance associated with the acquired data) baseline condition and transition to another activated state. It uses the long baseline data to estimate the variance measure associated with the temporal data from a voxel within the image and sets a statistically rigorous threshold for activation in spite of the known temporal correlation in the data. This analysis technique is being validated with simulated and experimental data. Furthermore, this analysis technique is being incorporated into numerous experiments including one designed to look at the blood flow changes in the brain associated with alcoholic intake in normal subjects. This presents an ideal demonstration of this analysis technique to basically establish a response curve for alcohol intake. Finally, statistical analysis in the temporal domain based on traditional time series analysis in the Fourier domain have been developed and given similar results in terms of localization of the signal in fMRI blood flow studies to other less rigorous and generalizable techniques. This analysis methodology has the potential to (1) localize fMRI activation changes, (2) estimate or reconstruct the activated signal without the associated noise, (3) estimate the hemodynamic response function locally without prior assumptions as to its structure, and (4) detect multiple responses to multiple input stimuli. Currently this technique is being used to study both simple finger tap data as well as more complex experimental designs including slides of visual stimuli designed to elicit different emotions or alcohol craving.
该项目的目的是统计方法的发展,考虑到像素间的相关性,或应用全局图像变换方法,允许不相关的图像成分的分析。典型感兴趣的是研究在不同实验条件下获得的来自个体受试者的图像之间的差异,或者来自不同诊断组的受试者的平均图像之间的差异。三种不同的统计方法已经开发,基于傅立叶变换,小波变换,高斯随机场理论在空间域中。在傅立叶域中,不同波数下的统计量是不相关的,并且可以不受空间相关性的阻碍地执行推断测试。这种方法提供了严格的统计测试与众所周知的属性和解释,但在空间上均匀的图像模糊的结果,并可能产生相对较差的空间定位。对于基于小波变换的分析,已经建立了一个数学上严格的理论,该理论对小波系数应用参数统计测试,并通过仅对重要系数进行逆小波变换来估计局部图像差异。该方法提供了良好的空间定位和局部自适应图像平滑的实施,但还没有积累太多的经验来解释测试结果和估计图像差异。高斯随机场分析具有良好的空间局部化特性,并且允许研究与外部变量的相关性(例如,年龄),但是它导致空间上均匀的图像模糊,并且不提供图像差异的统计重建估计(跨组或跨条件)。所有这三种方法已被应用于分析PET图像从正常和酗酒的主题,并确定了显着差异,在一般相同的大脑区域。高斯随机场分析能够在酗酒者的PET图像中证明前额叶皮质中的葡萄糖利用率与年龄呈显著负相关。目前对这些问题的研究包括发展一个1-D高斯随机场方法来分析功能磁共振成像时间序列数据。该方法可用于分析从实验中获得的fMRI数据,该实验设计为结合长(即足够长,如实验所确定的,以估计与所获得的数据相关的方差)基线条件并过渡到另一个激活状态。它使用长基线数据来估计与来自图像内的体素的时间数据相关联的方差测量,并且尽管数据中的已知时间相关性,但是为激活设置统计上严格的阈值。这种分析技术正在验证与模拟和实验数据。此外,这种分析技术正在被纳入许多实验中,包括一项旨在观察正常受试者与酒精摄入相关的大脑血流变化的实验。这提供了该分析技术的理想演示,以基本建立酒精摄入的响应曲线。最后,在傅立叶域中的传统时间序列分析的基础上,在时域中的统计分析已被开发,并给出了类似的结果,在功能磁共振成像血流研究中的信号的本地化,以其他不太严格和概括的技术。这种分析方法具有以下潜力:(1)定位fMRI激活变化,(2)估计或重建激活信号,而没有相关的噪声,(3)估计局部血流动力学响应函数,而无需事先假设其结构,以及(4)检测对多个输入刺激的多个响应。目前,这项技术被用于研究简单的手指敲击数据以及更复杂的实验设计,包括旨在引起不同情绪或酒精渴望的视觉刺激幻灯片。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Daniel W Hommer其他文献
Daniel W Hommer的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Daniel W Hommer', 18)}}的其他基金
FUNCTIONAL MAGNETIC RESONANCE IMAGING OF EMOTION AS RELATED TO ALCOHOLISM
与酗酒相关的情绪功能磁共振成像
- 批准号:
6431363 - 财政年份:
- 资助金额:
-- - 项目类别:
EYE MOVEMENTS IN ALCOHOLISM AND INDIVIDUALS AT RISK FOR ALCOHOLISM
酗酒时的眼球运动和有酗酒风险的个体
- 批准号:
6097541 - 财政年份:
- 资助金额:
-- - 项目类别:
Functional Magnetic Resonance Imaging Of Emotion As Related To Alcoholism
与酗酒相关的情绪功能磁共振成像
- 批准号:
8344665 - 财政年份:
- 资助金额:
-- - 项目类别:
Cerebral Structural And Metabolic Correlates Of Aggressi
攻击性的大脑结构和代谢相关性
- 批准号:
7317632 - 财政年份:
- 资助金额:
-- - 项目类别:
Cerebral Structural And Metabolic Correlates Of Aggressi
攻击性的大脑结构和代谢相关性
- 批准号:
6818437 - 财政年份:
- 资助金额:
-- - 项目类别:
Cerebral Structural And Metabolic Correlates Of Aggressive Or Addictive Behavior
攻击性或成瘾行为的大脑结构和代谢相关性
- 批准号:
7732091 - 财政年份:
- 资助金额:
-- - 项目类别:
EEG STUDIES OF ELECTROMOTIVE GENERATORS AFFECTED BY ALCOHOL
受酒精影响的发电机的脑电图研究
- 批准号:
6097554 - 财政年份:
- 资助金额:
-- - 项目类别:
Cerebral Structural And Metabolic Correlates Of Aggressi
攻击性的大脑结构和代谢相关性
- 批准号:
7146153 - 财政年份:
- 资助金额:
-- - 项目类别: