Role of a novel signal transduction pathway in GBS
一种新的信号转导途径在 GBS 中的作用
基本信息
- 批准号:7171915
- 负责人:
- 金额:$ 29.39万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2003
- 资助国家:美国
- 起止时间:2003-09-30 至 2010-01-31
- 项目状态:已结题
- 来源:
- 关键词:AdultAntibiotic ResistanceAntibiotic TherapyAppearanceBacteriaBindingBiochemicalBiologicalBiological AssayC-terminalCell physiologyCellsChemoprophylaxisDifferentiation and GrowthEnzymesEssential GenesEukaryotaEukaryotic CellExhibitsGenesGrowthHomologous GeneImmunocompromised HostIn VitroLeadMALDI-TOF Mass SpectrometryManganeseMass Spectrum AnalysisMeningitisMetabolismModemsMolecularMolecular GeneticsMolecular TargetMutationOrganismPathogenicityPathway interactionsPhosphoric Monoester HydrolasesPhosphorylationPhosphotransferasesPhysiologicalPneumoniaPost-Translational Protein ProcessingProkaryotic CellsProphylactic treatmentProtein BindingProtein-Serine-Threonine KinasesProteinsProteomicsPublic HealthPurposeRNA InterferenceReactionRegulationResourcesRoleSepsisSerineSignal PathwaySignal TransductionSignal Transduction PathwaySpectrometry, Mass, Matrix-Assisted Laser Desorption-IonizationStreptococcal InfectionsStreptococcusStreptococcus CAMP proteinStreptococcus Group BTechniquesTechnologyTherapeutic Human ExperimentationThinkingTransmembrane DomainVirulenceantimicrobialbasecell growthcell growth regulationcrosslinkdeletion analysisextracellularin vivoinsightliquid chromatography mass spectrometrymutantneonatal humannovelpathogenpathogenic bacteriaprotein-histidine kinaseproton-translocating pyrophosphatasepyrophosphataseresearch studysegregation
项目摘要
DESCRIPTION (provided by applicant): The gram-positive pathogen Streptococcus agalactiae (group B streptococci, GBS) is the principal cause of human neonatal pneumonia, sepsis and meningitis. GBS is also an emerging pathogen of immunocompromised adults. We recently identified and characterized a novel eukaryotic-type serine/threonine protein kinase (Stk1) and its cognate phosphatase (Stp1) in GBS. Mutants of this signal transduction pathway exhibited pleiotropic effects on cell growth, virulence and segregation of GBS, indicating the importance of this pathway in the regulation of various cellular processes. In vitro phosphorylation studies revealed that these enzymes are essential for reversible phosphorylation of many GBS proteins. Using mass spectrometric analysis, we identified one of these targets as a anganese-dependent inorganic pyrophosphatase (PpaC). Pyrophophatases are critical for regulation of biosynthetic reactions in the cell. Based on our results, we hypothesize that this signal transduction pathway and post-translational modification of its targets are crucial for normal cellular functions in GBS. A combination of molecular, biochemical and proteomic approaches will be used to elucidate the role of this signal transduction pathway and its physiological substrates in growth and virulence of GBS. In aim 1, we will identify and characterize the upstream and downstream targets of this pathway. We will utilize modem proteomic techniques such as liquid chromatography and mass spectrometry to identify other key targets of this signal transduction pathway. We will perform deletion analysis and protein cross-linking studies, to identify proteins that bind to and activate Stk1. In Aim 2, we will complete functional characterization of the identified physiological substrate of this signal transduction pathway, PpaC. In Aim 3, we will construct mutations in ppaC and a few other regulated targets of this pathway, identified in aim 1, to assess their role in growth and survival of GBS. We anticipate that some of these genes including ppaC will be essential for GBS growth. As mutants inessential genes are not viable, we will use the modem RNA interference technology to evaluate their role in GBS growth and survival. Collectively, these studies will determine the biological significance of this signal transduction pathway and lead to the identification of novel targets of GBS, which may provide insights into their potential as antimicrobial targets.
描述(由申请方提供):革兰氏阳性病原体无乳链球菌(B族链球菌,GBS)是人类新生儿肺炎、败血症和脑膜炎的主要原因。GBS也是免疫功能低下的成人的新兴病原体。我们最近发现并鉴定了一种新的真核生物型丝氨酸/苏氨酸蛋白激酶(Stk 1)及其同源磷酸酶(Stp 1)在GBS。该信号转导途径的突变体对GBS的细胞生长、毒力和分离具有多效性,表明该信号转导途径在调节细胞的各种过程中具有重要作用。体外磷酸化研究表明,这些酶是许多GBS蛋白可逆磷酸化所必需的。使用质谱分析,我们确定了这些目标之一,作为一个anganese依赖性无机焦磷酸酶(PpaC)。焦磷酸酶对于调节细胞中的生物合成反应至关重要。基于我们的研究结果,我们推测,这一信号转导途径及其靶点的翻译后修饰对GBS的正常细胞功能至关重要。结合分子生物学和蛋白质组学的方法将被用来阐明这一信号转导途径及其生理底物在GBS的生长和毒力中的作用。在目标1中,我们将识别和表征该途径的上游和下游靶标。我们将利用现代蛋白质组学技术,如液相色谱法和质谱法,以确定这一信号转导途径的其他关键目标。我们将进行缺失分析和蛋白质交联研究,以确定结合并激活Stk 1的蛋白质。在目标2中,我们将完成该信号转导途径的已鉴定生理底物PpaC的功能表征。在目标3中,我们将构建ppaC和目标1中鉴定的该途径的一些其他调节靶点的突变,以评估它们在GBS生长和存活中的作用。我们预计其中一些基因(包括ppaC)对于GBS的生长至关重要。由于非必需基因的突变体不能存活,我们将使用现代RNA干扰技术来评估它们在GBS生长和存活中的作用。总的来说,这些研究将确定这种信号转导途径的生物学意义,并导致GBS的新靶点的鉴定,这可能会提供其作为抗菌靶点的潜力的见解。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Crystallization and preliminary crystallographic analysis of two Streptococcus agalactiae proteins: the family II inorganic pyrophosphatase and the serine/threonine phosphatase.
两种无乳链球菌蛋白的结晶和初步晶体学分析:II族无机焦磷酸酶和丝氨酸/苏氨酸磷酸酶。
- DOI:10.1107/s174430910602954x
- 发表时间:2006
- 期刊:
- 影响因子:0
- 作者:Rantanen,MikaK;Lehtiö,Lari;Rajagopal,Lakshmi;Rubens,CraigE;Goldman,Adrian
- 通讯作者:Goldman,Adrian
Structure of the Streptococcus agalactiae family II inorganic pyrophosphatase at 2.80 A resolution.
无乳链球菌 II 族无机焦磷酸酶的结构,分辨率为 2.80 A。
- DOI:10.1107/s0907444907019695
- 发表时间:2007
- 期刊:
- 影响因子:0
- 作者:Rantanen,MikaK;Lehtiö,Lari;Rajagopal,Lakshmi;Rubens,CraigE;Goldman,Adrian
- 通讯作者:Goldman,Adrian
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
CRAIG E. RUBENS其他文献
CRAIG E. RUBENS的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('CRAIG E. RUBENS', 18)}}的其他基金
NEW MODEL OF ASCENDING INFECTION-RELATED PREMATURE BIRTH
感染相关早产上升的新模式
- 批准号:
8172769 - 财政年份:2010
- 资助金额:
$ 29.39万 - 项目类别:
NEW MODEL OF ASCENDING INFECTION-RELATED PREMATURE BIRTH
感染相关早产上升的新模式
- 批准号:
7958877 - 财政年份:2009
- 资助金额:
$ 29.39万 - 项目类别:
EXPERIMENTAL MODEL FOR CHORIOAMNIONITIS AND PRETERM LABOR
绒毛膜羊膜炎和早产的实验模型
- 批准号:
7716383 - 财政年份:2008
- 资助金额:
$ 29.39万 - 项目类别:
Role of a novel signal transduction pathway in GBS
一种新的信号转导途径在 GBS 中的作用
- 批准号:
6805782 - 财政年份:2003
- 资助金额:
$ 29.39万 - 项目类别:
Role of a novel signal transduction pathway in GBS
一种新的信号转导途径在 GBS 中的作用
- 批准号:
6674398 - 财政年份:2003
- 资助金额:
$ 29.39万 - 项目类别:
Role of a novel signal transduction pathway in GBS
一种新的信号转导途径在 GBS 中的作用
- 批准号:
6845303 - 财政年份:2003
- 资助金额:
$ 29.39万 - 项目类别:
Role of a novel signal transduction pathway in GBS
一种新的信号转导途径在 GBS 中的作用
- 批准号:
7008171 - 财政年份:2003
- 资助金额:
$ 29.39万 - 项目类别:
Early host microbial interactions in S. aureus pneumonia
金黄色葡萄球菌肺炎的早期宿主微生物相互作用
- 批准号:
6820113 - 财政年份:2003
- 资助金额:
$ 29.39万 - 项目类别:
Role of penicillin binding protein 1a in GBS virulence
青霉素结合蛋白 1a 在 GBS 毒力中的作用
- 批准号:
6611349 - 财政年份:2002
- 资助金额:
$ 29.39万 - 项目类别:
Role of penicillin binding protein 1a in GBS virulence
青霉素结合蛋白 1a 在 GBS 毒力中的作用
- 批准号:
6521686 - 财政年份:2002
- 资助金额:
$ 29.39万 - 项目类别:
相似海外基金
Ecological and Evolutionary Drivers of Antibiotic Resistance in Patients
患者抗生素耐药性的生态和进化驱动因素
- 批准号:
EP/Y031067/1 - 财政年份:2024
- 资助金额:
$ 29.39万 - 项目类别:
Research Grant
Collaborative Research: Leveraging the interactions between carbon nanomaterials and DNA molecules for mitigating antibiotic resistance
合作研究:利用碳纳米材料和 DNA 分子之间的相互作用来减轻抗生素耐药性
- 批准号:
2307222 - 财政年份:2024
- 资助金额:
$ 29.39万 - 项目类别:
Standard Grant
Molecular Epidemiology of Antibiotic Resistance in Clostridioides difficile
艰难梭菌抗生素耐药性的分子流行病学
- 批准号:
502587 - 财政年份:2024
- 资助金额:
$ 29.39万 - 项目类别:
Collaborative Research: Leveraging the interactions between carbon nanomaterials and DNA molecules for mitigating antibiotic resistance
合作研究:利用碳纳米材料和 DNA 分子之间的相互作用来减轻抗生素耐药性
- 批准号:
2307223 - 财政年份:2024
- 资助金额:
$ 29.39万 - 项目类别:
Standard Grant
The roles of a universally conserved DNA-and RNA-binding domain in controlling MRSA virulence and antibiotic resistance
普遍保守的 DNA 和 RNA 结合域在控制 MRSA 毒力和抗生素耐药性中的作用
- 批准号:
MR/Y013131/1 - 财政年份:2024
- 资助金额:
$ 29.39万 - 项目类别:
Research Grant
Determining structural dynamics of membrane proteins in their native environment: focus on bacterial antibiotic resistance
确定膜蛋白在其天然环境中的结构动力学:关注细菌抗生素耐药性
- 批准号:
MR/X009580/1 - 财政年份:2024
- 资助金额:
$ 29.39万 - 项目类别:
Fellowship
CAREER: Systems Microbiology and InterdiscipLinary Education for Halting Environmental Antibiotic Resistance Transmission (SMILE HEART)
职业:阻止环境抗生素耐药性传播的系统微生物学和跨学科教育(SMILE HEART)
- 批准号:
2340818 - 财政年份:2024
- 资助金额:
$ 29.39万 - 项目类别:
Continuing Grant
Reinforcing the battle at the bacterial cell wall: Structure-guided characterization and inhibition of beta-lactam antibiotic resistance signalling mechanisms
加强细菌细胞壁的战斗:β-内酰胺抗生素耐药信号机制的结构引导表征和抑制
- 批准号:
480022 - 财政年份:2023
- 资助金额:
$ 29.39万 - 项目类别:
Operating Grants
The spread of antibiotic resistance in bacteria-plasmid networks
抗生素耐药性在细菌-质粒网络中的传播
- 批准号:
BB/X010473/1 - 财政年份:2023
- 资助金额:
$ 29.39万 - 项目类别:
Fellowship
An RNA Nanosensor for the Diagnosis of Antibiotic Resistance in M. Tuberculosis
用于诊断结核分枝杆菌抗生素耐药性的 RNA 纳米传感器
- 批准号:
10670613 - 财政年份:2023
- 资助金额:
$ 29.39万 - 项目类别: