Live spike sorting for multichannel and high-channel recordings
针对多通道和高通道录音的实时尖峰排序
基本信息
- 批准号:10759767
- 负责人:
- 金额:$ 43.85万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-22 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:Action PotentialsAlgorithmsAnimal ExperimentsAreaBenchmarkingBrainCellsComplementComputational TechniqueComputersDataData SetDevicesElectrodesEquipmentExperimental DesignsFeedbackGoalsGraphLibrariesLogicMarketingMeasuresMemoryNeuronsOutcomePatternPositioning AttributeProcessPythonsQuality ControlResearch PersonnelRunningSlaveSortingSpeedStreamSystemTechnologyTimeWillowWorkcomplex datadata reductiondata standardsdata streamsdesignexperimental studyextracellularhigh end computerin vivoinnovationlaboratory equipmentmathematical methodsneuralneurophysiologynovelprototypetime usevirtual
项目摘要
Project Summary:
The goal of this project is to create two prototypes of a novel live spike sorting system which can be used by
investigators to spike sort streams of neural data recorded by multi-channel, high channel and ultra-high
channel probes. In most in-vivo extracellular recording conditions, an electrode can pick up neural spikes
from several nearby neurons resulting in so-called “multi-unit” activity in the recording trace. Spike sorting
algorithms are then used to separate this multi-unit activity into several sets of “single-unit” activities, each
of which represents the action potential firing pattern of a single neuron. This sorting process is typically a
computationally intensive process and is growing into a critical technology gap with the advent of multi and
high channel count hardware. Live spike sorting of a complete set of multichannel data has been challenging
if not impossible. On the other hand, there is a demand for live spike sorting during an experiment,
especially by those investigators who record from functionally heterogenous brain areas such as, for
example, all cortical regions. If an investigator had the ability to review live single cell data, he/she could
determine the quality of the data and adjust the electrode position or decide on next experimental steps
based on the incoming results.
We recently developed the GEMsort algorithm, which, compared to existing spike sorting algorithms, was
designed to sort neural spikes from multichannel probes with immediate sorting outcomes. These
algorithms provide powerful, accurate yet computationally inexpensive spike sorting due to a different
mathematical approach. As a result, these algorithms can spike sort complete streams of complex data,
including data recorded with high channel and ultra-high channel electrodes virtually in real time. In this
proposal, we will develop two tabletop-sized systems based on Field-Programmable Gate Array (FPGA)
technology for laboratory use. These systems will be based on the GEMsort algorithm and add live spike
sorting capabilities to an investigator's existing recording setup.
项目概要:
该项目的目标是创建两个新型活穗分拣系统的原型,可供以下人员使用
研究人员对多通道、高通道和超高通道记录的神经数据流进行了尖峰排序,
通道探针。在大多数体内细胞外记录条件下,电极可以拾取神经尖峰
从几个附近的神经元,导致所谓的“多单位”活动的记录痕迹。尖峰分选
然后使用算法将多单元活动分成几组“单单元”活动,
其中的一个表示单个神经元的动作电位放电模式。这个排序过程通常是
计算密集型的过程,并正在成长为一个关键的技术差距,随着多和
高通道数硬件。完整多通道数据集的实时尖峰排序一直具有挑战性
如果不是不可能话。另一方面,在实验过程中需要活尖峰分选,
特别是那些从功能异质的大脑区域记录的研究者,
例如,所有皮层区域。如果研究者有能力审查活单细胞数据,他/她可以
确定数据的质量并调整电极位置或决定下一个实验步骤
根据结果。
我们最近开发了GEMSort算法,与现有的尖峰排序算法相比,
设计用于对来自多通道探针的神经尖峰进行分类,并立即产生分类结果。这些
算法提供了强大的,准确的,但计算成本低廉的尖峰排序,由于不同的
数学方法因此,这些算法可以对复杂数据的完整流进行尖峰排序,
包括利用高通道和超高通道电极虚拟地以真实的时间记录的数据。在这
根据该方案,我们将开发两个基于现场可编程门阵列(FPGA)的桌面大小的系统
实验室使用的技术。这些系统将在GEMSort算法的基础上添加活穗
分类能力到调查员的现有记录设置。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Achim Klug其他文献
Achim Klug的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Achim Klug', 18)}}的其他基金
Fast Inhibition in the Sound Localization Pathway
声音定位途径的快速抑制
- 批准号:
10330461 - 财政年份:2020
- 资助金额:
$ 43.85万 - 项目类别:
Eliminating the human factor from stereotaxic surgeries
消除立体定向手术中的人为因素
- 批准号:
10080673 - 财政年份:2020
- 资助金额:
$ 43.85万 - 项目类别:
Fast Inhibition in the Sound Localization Pathway
声音定位途径的快速抑制
- 批准号:
10115691 - 财政年份:2020
- 资助金额:
$ 43.85万 - 项目类别:
Fast Inhibition in the Sound Localization Pathway
声音定位途径的快速抑制
- 批准号:
10570857 - 财政年份:2020
- 资助金额:
$ 43.85万 - 项目类别:
The contributions of age related changes in the sound localization pathway to central hearing loss
声音定位路径中与年龄相关的变化对中枢性听力损失的贡献
- 批准号:
10621204 - 财政年份:2019
- 资助金额:
$ 43.85万 - 项目类别:
The contributions of age related changes in the sound localization pathway to central hearing loss
声音定位路径中与年龄相关的变化对中枢性听力损失的贡献
- 批准号:
10164754 - 财政年份:2019
- 资助金额:
$ 43.85万 - 项目类别:
The contributions of age related changes in the sound localization pathway to central hearing loss
声音定位路径中与年龄相关的变化对中枢性听力损失的贡献
- 批准号:
10394729 - 财政年份:2019
- 资助金额:
$ 43.85万 - 项目类别:
The roles of GABAergic and glycinergic inhibition in the adult MNTB
GABA 能和甘氨酸能抑制在成人 MNTB 中的作用
- 批准号:
8841713 - 财政年份:2011
- 资助金额:
$ 43.85万 - 项目类别:
Developmental effects of early hearing loss on auditory information processing
早期听力损失对听觉信息处理的发育影响
- 批准号:
10188487 - 财政年份:2011
- 资助金额:
$ 43.85万 - 项目类别:
The roles of GABAergic and glycinergic inhibition in the adult MNTB
GABA 能和甘氨酸能抑制在成人 MNTB 中的作用
- 批准号:
8468160 - 财政年份:2011
- 资助金额:
$ 43.85万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 43.85万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 43.85万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 43.85万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 43.85万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 43.85万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 43.85万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 43.85万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 43.85万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 43.85万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 43.85万 - 项目类别:
Continuing Grant














{{item.name}}会员




