Live spike sorting for multichannel and high-channel recordings

针对多通道和高通道录音的实时尖峰排序

基本信息

  • 批准号:
    10759767
  • 负责人:
  • 金额:
    $ 43.85万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-09-22 至 2025-08-31
  • 项目状态:
    未结题

项目摘要

Project Summary: The goal of this project is to create two prototypes of a novel live spike sorting system which can be used by investigators to spike sort streams of neural data recorded by multi-channel, high channel and ultra-high channel probes. In most in-vivo extracellular recording conditions, an electrode can pick up neural spikes from several nearby neurons resulting in so-called “multi-unit” activity in the recording trace. Spike sorting algorithms are then used to separate this multi-unit activity into several sets of “single-unit” activities, each of which represents the action potential firing pattern of a single neuron. This sorting process is typically a computationally intensive process and is growing into a critical technology gap with the advent of multi and high channel count hardware. Live spike sorting of a complete set of multichannel data has been challenging if not impossible. On the other hand, there is a demand for live spike sorting during an experiment, especially by those investigators who record from functionally heterogenous brain areas such as, for example, all cortical regions. If an investigator had the ability to review live single cell data, he/she could determine the quality of the data and adjust the electrode position or decide on next experimental steps based on the incoming results. We recently developed the GEMsort algorithm, which, compared to existing spike sorting algorithms, was designed to sort neural spikes from multichannel probes with immediate sorting outcomes. These algorithms provide powerful, accurate yet computationally inexpensive spike sorting due to a different mathematical approach. As a result, these algorithms can spike sort complete streams of complex data, including data recorded with high channel and ultra-high channel electrodes virtually in real time. In this proposal, we will develop two tabletop-sized systems based on Field-Programmable Gate Array (FPGA) technology for laboratory use. These systems will be based on the GEMsort algorithm and add live spike sorting capabilities to an investigator's existing recording setup.
项目概要: 该项目的目标是创建两个新颖的实时穗分拣系统原型,可供以下人员使用: 研究人员对多通道、高通道和超高通道记录的神经数据流进行尖峰排序 通道探头。在大多数体内细胞外记录条件下,电极可以拾取神经尖峰 来自附近几个神经元的信号,导致记录轨迹中所谓的“多单元”活动。穗分选 然后使用算法将这种多单元活动分成几组“单单元”活动,每个活动 其中代表单个神经元的动作电位放电模式。这个排序过程通常是 计算密集型过程,并且随着多用途和多用途技术的出现,正在成为一个关键的技术差距 高通道数硬件。对一组完整的多通道数据进行实时峰值排序一直具有挑战性 如果不是不可能的话。另一方面,实验过程中需要进行实时尖峰排序, 尤其是那些从功能异质的大脑区域进行记录的研究人员,例如 例如,所有皮质区域。如果研究人员有能力审查实时单细胞数据,他/她可以 确定数据的质量并调整电极位置或决定下一步的实验步骤 基于传入的结果。 我们最近开发了 GEMsort 算法,与现有的尖峰排序算法相比, 旨在对来自多通道探针的神经尖峰进行排序,并立即得到排序结果。这些 由于不同的算法,算法提供了强大、准确且计算成本低廉的尖峰排序 数学方法。因此,这些算法可以对复杂数据的完整流进行尖峰排序, 包括用高通道和超高通道电极几乎实时记录的数据。在这个 根据提案,我们将开发两种基于现场可编程门阵列(FPGA)的桌面大小的系统 实验室使用的技术。这些系统将基于GEMsort算法并添加实时秒杀 对调查员现有记录设置进行排序的功能。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Achim Klug其他文献

Achim Klug的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Achim Klug', 18)}}的其他基金

Fast Inhibition in the Sound Localization Pathway
声音定位途径的快速抑制
  • 批准号:
    10330461
  • 财政年份:
    2020
  • 资助金额:
    $ 43.85万
  • 项目类别:
Eliminating the human factor from stereotaxic surgeries
消除立体定向手术中的人为因素
  • 批准号:
    10080673
  • 财政年份:
    2020
  • 资助金额:
    $ 43.85万
  • 项目类别:
Fast Inhibition in the Sound Localization Pathway
声音定位途径的快速抑制
  • 批准号:
    10115691
  • 财政年份:
    2020
  • 资助金额:
    $ 43.85万
  • 项目类别:
Fast Inhibition in the Sound Localization Pathway
声音定位途径的快速抑制
  • 批准号:
    10570857
  • 财政年份:
    2020
  • 资助金额:
    $ 43.85万
  • 项目类别:
The contributions of age related changes in the sound localization pathway to central hearing loss
声音定位路径中与年龄相关的变化对中枢性听力损失的贡献
  • 批准号:
    10621204
  • 财政年份:
    2019
  • 资助金额:
    $ 43.85万
  • 项目类别:
The contributions of age related changes in the sound localization pathway to central hearing loss
声音定位路径中与年龄相关的变化对中枢性听力损失的贡献
  • 批准号:
    10164754
  • 财政年份:
    2019
  • 资助金额:
    $ 43.85万
  • 项目类别:
The contributions of age related changes in the sound localization pathway to central hearing loss
声音定位路径中与年龄相关的变化对中枢性听力损失的贡献
  • 批准号:
    10394729
  • 财政年份:
    2019
  • 资助金额:
    $ 43.85万
  • 项目类别:
The roles of GABAergic and glycinergic inhibition in the adult MNTB
GABA 能和甘氨酸能抑制在成人 MNTB 中的作用
  • 批准号:
    8841713
  • 财政年份:
    2011
  • 资助金额:
    $ 43.85万
  • 项目类别:
Developmental effects of early hearing loss on auditory information processing
早期听力损失对听觉信息处理的发育影响
  • 批准号:
    10188487
  • 财政年份:
    2011
  • 资助金额:
    $ 43.85万
  • 项目类别:
The roles of GABAergic and glycinergic inhibition in the adult MNTB
GABA 能和甘氨酸能抑制在成人 MNTB 中的作用
  • 批准号:
    8468160
  • 财政年份:
    2011
  • 资助金额:
    $ 43.85万
  • 项目类别:

相似海外基金

CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 43.85万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 43.85万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 43.85万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 43.85万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 43.85万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 43.85万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 43.85万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 43.85万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 43.85万
  • 项目类别:
    Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 43.85万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了