Untethered high channel count electrophysiology for freely-moving animals
适用于自由活动动物的不受束缚的高通道数电生理学
基本信息
- 批准号:10761109
- 负责人:
- 金额:$ 51.98万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-01 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAlzheimer&aposs DiseaseAnimal BehaviorAnimalsArchitectureBRAIN initiativeBehaviorBehavioralBluetoothBrainBrain DiseasesCellsCognitionComplexCustomDataDevelopmentElectrodesElectrophysiology (science)EngineeringEnsureEnvironmentEpilepsyFundingGenerationsGoalsHeadImageIndividualLearningMammalsMemoryMental DepressionNeurobiologyNeurofibrillary TanglesNeurologicNeuronsNoiseParkinson DiseasePerformancePeripheralPhasePilot ProjectsPopulationProductionResearch PersonnelResolutionRodentSamplingScientific InquiryServicesSiliconSmall Business Innovation Research GrantSortingStreamSurfaceSystemTechniquesTechnologyTelemetryTestingThinnessTimeTissuesWeightWillowWireless TechnologyWritinganalogbehavioral studycostdata acquisitiondesigndigitaldriving forceeffective therapyexperimental studyimprovedin vivoinnovationlight weightmanufacturemillisecondneuralneural circuitneural stimulationneuronal circuitrynovelpower consumptionreal time monitoringresearch facilitysensortheoriestoolwirelesswireless fidelity
项目摘要
PROJECT SUMMARY
Recording whole-brain activity with single neuron resolution and millisecond timescale precision is crucial to
understanding how individual cells and complex neural circuits interact in both time and space. Simultaneous
recording and stimulation of large populations of neurons distributed throughout the brain are needed to
rigorously evaluate theories of neural computation at the cellular level in mammals, and extended longitudinal
recordings are required to establish general principles for neuronal circuits/dynamics and how complex
neuronal activity relates to behavior, both to further our fundamental understanding of the brain, but also to
surface underlying causes of neurological and psychiatric conditions such as Alzheimer’s, Parkinson’s, TBI,
epilepsy, and depression, and to aid development of novel and more effective treatments.
These are key goals of the BRAIN initiative, and the driving force behind LeafLabs' Willow, an
electrophysiology recording system designed to take advantage of novel, close-packed 1000-channel silicon
probes originally developed by the Synthetic Neurobiology Group at MIT. These ultra-high-channel-count
probes allow for more neurons to be recorded simultaneously, opening up new lines of scientific inquiry, and
the dense packing of the electrodes permits spatial oversampling of the neurons, allowing for automated spike
sorting techniques with greatly increased capability for tracking individual units.
Additionally, LeafLabs' Catkin, a custom 1000 channel neurosensing IC chip (filter, amplification, multiplexing,
and analog-digital conversion) has been developed to integrate with these probes, resulting in a
probe/headstage combo suitable for use in freely-moving electrophysiology experiments that reduces size,
weight, and cost each by a factor of 10 compared to commercially available headstages. Currently, the Catkin
probe/headstage combo is tethered to the Willow DAQ system by an ultra thin and lightweight cable (a single
shielded 32 AWG twisted pair), resulting in a system ideal for many prolonged freely moving experiments.
However, in certain behavioral setups, even a lightweight, minimalist cable is undesirable. For example,
because the high data rates are incompatible with approaches used to manage the cable tether
(commutators), researchers must occasionally intervene to de-tangle cables; or, the presence of a tether may
result in altered behavior from animals. To address these needs, this application proposes the development of
a first-of-its-kind fully untethered 1000-channel-simultaneous 30kHz in-vivo electrophysiological
recording module, to be made available as a lightweight add-on to the extant Willow system.
项目总结
以单个神经元的分辨率和毫秒级的时间精度记录全脑活动对于
了解单个细胞和复杂的神经回路如何在时间和空间上相互作用。同时进行
需要记录和刺激分布在整个大脑中的大量神经元
严格评估哺乳动物细胞水平上的神经计算理论,并纵向扩展
需要录音来确定神经元电路/动力学的一般原则以及复杂程度
神经元活动与行为有关,这既是为了加深我们对大脑的基本了解,也是为了
神经和精神疾病的表面潜在原因,如阿尔茨海默氏症、帕金森氏症、脑外伤、
癫痫和抑郁症,并帮助开发新的和更有效的治疗方法。
这些都是大脑计划的关键目标,也是LeafLabs Willow背后的驱动力,以及
利用新型、紧密堆积的1000沟道硅设计的电生理记录系统
探测器最初是由麻省理工学院合成神经生物学小组开发的。这些超高通道数
探测器允许同时记录更多的神经元,开辟了新的科学研究路线,
电极的密集堆积允许对神经元进行空间过采样,从而允许自动发放尖峰
大大提高了跟踪单个单元的能力的分类技术。
此外,LeafLabs的Catkin是一款定制的1000通道神经传感IC芯片(滤波、放大、多路传输、
和模拟-数字转换)已被开发为与这些探头集成,从而产生
适合在减小尺寸的自由移动电生理实验中使用的探头/前台组合,
重量和成本,与商业上可用的前置舞台相比,每个都提高了10倍。目前,猫头鹰
探头/前台组合通过一根超细且轻便的电缆(单个
屏蔽32 AWG双绞线),使该系统成为许多长期自由移动实验的理想之选。
然而,在某些行为设置中,即使是轻便、极简主义的电缆也是不可取的。例如,
因为高数据速率与用于管理电缆系绳的方法不兼容
(换向器),研究人员必须偶尔介入以解开电缆;或者,系绳的存在可能
会导致动物行为的改变。为了满足这些需求,此应用程序建议开发
首创完全无束缚的1000通道同步30 kHz活体电生理装置
录制模块,作为现有Willow系统的一个轻量级附加组件提供。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
John L Sherwood其他文献
John L Sherwood的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('John L Sherwood', 18)}}的其他基金
High channel count electrophysiology and data processing for freely-moving animals
自由移动动物的高通道数电生理学和数据处理
- 批准号:
10385193 - 财政年份:2017
- 资助金额:
$ 51.98万 - 项目类别:
High channel count electrophysiology and data processing for freely-moving animals
自由移动动物的高通道数电生理学和数据处理
- 批准号:
10487568 - 财政年份:2017
- 资助金额:
$ 51.98万 - 项目类别:
High channel count electrophysiology and data processing for freely-moving animals
自由移动动物的高通道数电生理学和数据处理
- 批准号:
10680473 - 财政年份:2017
- 资助金额:
$ 51.98万 - 项目类别: