High channel count electrophysiology and data processing for freely-moving animals

自由移动动物的高通道数电生理学和数据处理

基本信息

  • 批准号:
    10385193
  • 负责人:
  • 金额:
    $ 100.54万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-09-21 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

PROJECT SUMMARY Simultaneous recording and stimulation of larger populations of neurons distributed throughout the brain is needed to rigorously evaluate theories of neural computation at the cellular level in mammals. Previously, we introduced a direct-to-disk data acquisition architecture (Kinney et al., 2015) designed to work with close-packed silicon probes (Scholvin et al., 2016) to enable 1000-channel neural recording in head-fixed animals (Preliminary Data). Through pilot studies we demonstrated the successful recording of terabytes of neural spiking activity (Preliminary Data), but also discovered some shortcomings of the architecture. Two design elements in particular were limiting. First, our headstages were too bulky for freely-moving experiments. Second, our acquisition hardware did not have the ability to quickly analyze all 1000 channels of data. As a result, it took days to weeks to understand the neural activity content of the terabyte-size recordings. For ultra-high-channel count neural recordings to become routine, the acquisition architecture must allow and facilitate rapid online and offline analysis of large amounts of data. A computer architecture with local data storage and analysis is favored, since a 1000-channel recording (e.g. 1000 channels sampled with 16 bits at 30 kHz) generates neural data at a sustained rate that exceed typical (gigabit ethernet) network connection speed to compute clusters or the cloud. Accordingly, we propose a 1024-channel silicon probe for freely-moving electrophysiology experiments in combination with a data acquisition system optimized for easy data analysis. The novel silicon probe will record and stimulate 1024 closed-packed sites, be compact enough for freely-moving rodent experiments, and reduce headstage cost by a factor of 5 (<$1 per channel). Furthermore, the redesigned acquisition hardware will not only capture 1024 channels of neural data and store to solid-state drive over a high-speed bus, but will now also copy the data to a GPU for spike sorting and RAM for visualization both online and offline. To test the system, we will perform 1024-channel freely-moving neural recordings in rodents, in collaboration with (at least) 3 labs with expertise (see Letters of Support).
项目概要 同时记录和刺激分布在整个大脑中的大量神经元 需要严格评估哺乳动物细胞水平的神经计算理论。此前,我们 引入了直接到磁盘的数据采集架构(Kinney et al., 2015),旨在与 密堆积硅探针(Scholvin et al., 2016)可在头部固定中实现 1000 通道神经记录 动物(初步数据)。通过试点研究,我们证明了 TB 级数据的成功记录 神经尖峰活动(初步数据),但也发现了该架构的一些缺点。二 设计元素尤其受到限制。首先,我们的探头对于自由移动的实验来说太大了。 其次,我们的采集硬件不具备快速分析所有1000个通道数据的能力。作为一个 结果,需要几天到几周的时间才能了解 TB 大小的录音的神经活动内容。为了 超高通道数神经记录要成为常规,采集架构必须允许和 促进大量数据的快速在线和离线分析。具有本地数据的计算机体系结构 存储和分析受到青睐,因为 1000 通道记录(例如,以 16 位采样的 1000 个通道) 30 kHz)以超过典型(千兆位以太网)网络连接的持续速率生成神经数据 计算集群或云的速度。 因此,我们提出了一种用于自由移动电生理学的 1024 通道硅探针 与经过优化的数据采集系统相结合进行实验,以方便数据分析。小说 硅探针将记录和刺激 1024 个密闭位置,足够紧凑,适合自由移动的啮齿动物 实验,并将探头成本降低 5 倍(每通道 < 1 美元)。此外,重新设计的 采集硬件不仅可以捕获 1024 个通道的神经数据并通过 高速总线,但现在还将数据复制到 GPU 进行峰值排序和 RAM 进行可视化 线上和线下。为了测试该系统,我们将对啮齿类动物进行 1024 通道自由移动神经记录, 与(至少)3 个具有专业知识的实验室合作(参见支持信)。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

John L Sherwood其他文献

John L Sherwood的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('John L Sherwood', 18)}}的其他基金

Untethered high channel count electrophysiology for freely-moving animals
适用于自由活动动物的不受束缚的高通道数电生理学
  • 批准号:
    10761109
  • 财政年份:
    2023
  • 资助金额:
    $ 100.54万
  • 项目类别:
High channel count electrophysiology and data processing for freely-moving animals
自由移动动物的高通道数电生理学和数据处理
  • 批准号:
    10487568
  • 财政年份:
    2017
  • 资助金额:
    $ 100.54万
  • 项目类别:
High channel count electrophysiology and data processing for freely-moving animals
自由移动动物的高通道数电生理学和数据处理
  • 批准号:
    10680473
  • 财政年份:
    2017
  • 资助金额:
    $ 100.54万
  • 项目类别:

相似海外基金

Investigating the Adoption, Actual Usage, and Outcomes of Enterprise Collaboration Systems in Remote Work Settings.
调查远程工作环境中企业协作系统的采用、实际使用和结果。
  • 批准号:
    24K16436
  • 财政年份:
    2024
  • 资助金额:
    $ 100.54万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
WELL-CALF: optimising accuracy for commercial adoption
WELL-CALF:优化商业采用的准确性
  • 批准号:
    10093543
  • 财政年份:
    2024
  • 资助金额:
    $ 100.54万
  • 项目类别:
    Collaborative R&D
Unraveling the Dynamics of International Accounting: Exploring the Impact of IFRS Adoption on Firms' Financial Reporting and Business Strategies
揭示国际会计的动态:探索采用 IFRS 对公司财务报告和业务战略的影响
  • 批准号:
    24K16488
  • 财政年份:
    2024
  • 资助金额:
    $ 100.54万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 100.54万
  • 项目类别:
    EU-Funded
Assessing the Coordination of Electric Vehicle Adoption on Urban Energy Transition: A Geospatial Machine Learning Framework
评估电动汽车采用对城市能源转型的协调:地理空间机器学习框架
  • 批准号:
    24K20973
  • 财政年份:
    2024
  • 资助金额:
    $ 100.54万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 100.54万
  • 项目类别:
    EU-Funded
De-Adoption Beta-Blockers in patients with stable ischemic heart disease without REduced LV ejection fraction, ongoing Ischemia, or Arrhythmias: a randomized Trial with blinded Endpoints (ABbreviate)
在没有左心室射血分数降低、持续性缺血或心律失常的稳定型缺血性心脏病患者中停用β受体阻滞剂:一项盲法终点随机试验(ABbreviate)
  • 批准号:
    481560
  • 财政年份:
    2023
  • 资助金额:
    $ 100.54万
  • 项目类别:
    Operating Grants
Our focus for this project is accelerating the development and adoption of resource efficient solutions like fashion rental through technological advancement, addressing longer in use and reuse
我们该项目的重点是通过技术进步加快时装租赁等资源高效解决方案的开发和采用,解决更长的使用和重复使用问题
  • 批准号:
    10075502
  • 财政年份:
    2023
  • 资助金额:
    $ 100.54万
  • 项目类别:
    Grant for R&D
Engage2innovate – Enhancing security solution design, adoption and impact through effective engagement and social innovation (E2i)
Engage2innovate — 通过有效参与和社会创新增强安全解决方案的设计、采用和影响 (E2i)
  • 批准号:
    10089082
  • 财政年份:
    2023
  • 资助金额:
    $ 100.54万
  • 项目类别:
    EU-Funded
Collaborative Research: SCIPE: CyberInfrastructure Professionals InnoVating and brOadening the adoption of advanced Technologies (CI PIVOT)
合作研究:SCIPE:网络基础设施专业人员创新和扩大先进技术的采用 (CI PIVOT)
  • 批准号:
    2321091
  • 财政年份:
    2023
  • 资助金额:
    $ 100.54万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了