High channel count electrophysiology and data processing for freely-moving animals

自由移动动物的高通道数电生理学和数据处理

基本信息

  • 批准号:
    10680473
  • 负责人:
  • 金额:
    $ 78.88万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-09-21 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

PROJECT SUMMARY Simultaneous recording and stimulation of larger populations of neurons distributed throughout the brain is needed to rigorously evaluate theories of neural computation at the cellular level in mammals. Previously, we introduced a direct-to-disk data acquisition architecture (Kinney et al., 2015) designed to work with close-packed silicon probes (Scholvin et al., 2016) to enable 1000-channel neural recording in head-fixed animals (Preliminary Data). Through pilot studies we demonstrated the successful recording of terabytes of neural spiking activity (Preliminary Data), but also discovered some shortcomings of the architecture. Two design elements in particular were limiting. First, our headstages were too bulky for freely-moving experiments. Second, our acquisition hardware did not have the ability to quickly analyze all 1000 channels of data. As a result, it took days to weeks to understand the neural activity content of the terabyte-size recordings. For ultra-high-channel count neural recordings to become routine, the acquisition architecture must allow and facilitate rapid online and offline analysis of large amounts of data. A computer architecture with local data storage and analysis is favored, since a 1000-channel recording (e.g. 1000 channels sampled with 16 bits at 30 kHz) generates neural data at a sustained rate that exceed typical (gigabit ethernet) network connection speed to compute clusters or the cloud. Accordingly, we propose a 1024-channel silicon probe for freely-moving electrophysiology experiments in combination with a data acquisition system optimized for easy data analysis. The novel silicon probe will record and stimulate 1024 closed-packed sites, be compact enough for freely-moving rodent experiments, and reduce headstage cost by a factor of 5 (<$1 per channel). Furthermore, the redesigned acquisition hardware will not only capture 1024 channels of neural data and store to solid-state drive over a high-speed bus, but will now also copy the data to a GPU for spike sorting and RAM for visualization both online and offline. To test the system, we will perform 1024-channel freely-moving neural recordings in rodents, in collaboration with (at least) 3 labs with expertise (see Letters of Support).
项目总结 同时记录和刺激分布在大脑中的更大数量的神经元是 需要在哺乳动物细胞水平上严格评估神经计算理论。此前,我们 推出了直接到磁盘的数据采集体系结构(Kinney等人,2015年),旨在与 紧密堆积的硅探头(Scholvin等人,2016),以实现头固定的1000通道神经记录 动物(初步数据)。通过试点研究,我们成功地记录了TB 神经放电活动(初步数据),但也发现了一些架构的缺陷。二 特别是设计元素是有限的。首先,我们的头台太大,不能自由移动的实验。 其次,我们的采集硬件没有能力快速分析所有1000个通道的数据。作为一名 结果,需要几天到几周的时间才能理解TB大小的记录的神经活动内容。为 超高通道数神经记录要成为常规,采集架构必须允许和 促进对海量数据的快速在线和离线分析。具有本地数据的计算机体系结构 存储和分析是有利的,因为1000通道记录(例如,以16比特采样的1000通道 30 kHz)以超过典型(千兆以太网)网络连接的持续速率生成神经数据 加速计算群集或云。 因此,我们提出了一种用于自由移动电生理的1024通道硅探针 实验与优化的数据采集系统相结合,便于数据分析。这部小说 硅探头将记录和刺激1024个紧密堆积的地点,足够紧凑,适合自由活动的啮齿动物 实验,并将前期成本降低5倍(每个通道1英镑)。此外,重新设计的 采集硬件不仅将捕获1024个通道的神经数据,并将其存储到固态驱动器上 高速总线,但现在还会将数据复制到GPU以进行尖峰排序,并复制到RAM以进行可视化 线上和线下。为了测试该系统,我们将在啮齿动物身上进行1024个通道的自由移动神经记录, 与(至少)3个具有专业知识的实验室合作(见支持函)。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

John L Sherwood其他文献

John L Sherwood的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('John L Sherwood', 18)}}的其他基金

Untethered high channel count electrophysiology for freely-moving animals
适用于自由活动动物的不受束缚的高通道数电生理学
  • 批准号:
    10761109
  • 财政年份:
    2023
  • 资助金额:
    $ 78.88万
  • 项目类别:
High channel count electrophysiology and data processing for freely-moving animals
自由移动动物的高通道数电生理学和数据处理
  • 批准号:
    10385193
  • 财政年份:
    2017
  • 资助金额:
    $ 78.88万
  • 项目类别:
High channel count electrophysiology and data processing for freely-moving animals
自由移动动物的高通道数电生理学和数据处理
  • 批准号:
    10487568
  • 财政年份:
    2017
  • 资助金额:
    $ 78.88万
  • 项目类别:

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 78.88万
  • 项目类别:
    Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    $ 78.88万
  • 项目类别:
    Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 78.88万
  • 项目类别:
    Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 78.88万
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 78.88万
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 78.88万
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 78.88万
  • 项目类别:
    EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 78.88万
  • 项目类别:
    Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 78.88万
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 78.88万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了