Transcutaneous electrical stimulation of conductive polymers to promote nerve re-
导电聚合物经皮电刺激促进神经再生
基本信息
- 批准号:7481878
- 负责人:
- 金额:$ 23.38万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-09-01 至 2010-08-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAnimal ModelBiocompatible MaterialsCellsCollaborationsCollagenComplementConditionCulture MediaDevelopmentDevicesElectric StimulationElectrodesElectromagnetic EnergyElectromagnetic FieldsElectromagneticsEndothelial CellsEnergy TransferExhibitsFilmFutureGoalsGrowthHealedHeatingHyaluronic AcidHydrogelsIn VitroInvasiveMeasuresMedical DeviceMethodsModelingNatural regenerationNerveNeuronsOsteoblastsPeripheral NervesPeripheral nerve injuryPhasePolymersProcessPublic HealthRattusResearchSeriesShapesSiteSmall Business Funding MechanismsSmall Business Innovation Research GrantSpeedSpinal GangliaStimulusSystemTechnologyTestingTexasThickTissuesTranscutaneous Electric Nerve StimulationTubeTubular formationUnited States National Institutes of HealthUniversitiesVirginiaWireless Technologyaustinbiodegradable polymerbiomaterial compatibilitycell growthdesigndesireelectric fieldengineering designganglion cellhealingin vivomagnetic fieldprototyperepairedresearch studysciatic nerveskillsthree-dimensional modelingtranscutaneous stimulation
项目摘要
DESCRIPTION (provided by applicant): Intrinsically Conducting Polymers (ICPs) have good biocompatibility and can be used as substrates to deliver electrical stimulation to anchorage-dependent cells such as osteoblasts, endothelial cells and neurons. This type of stimulation speeds up cells' growth and proliferation. During a previous NIH SBIR project, TDA Research, Inc. developed forms of ICPs that are biodegradable and, in collaboration with the University of Texas at Austin, demonstrated that these polymers could be used to deliver in vitro electrical stimulation to neuron-like cells. We also demonstrated that different types of electrical stimulation could be used to control the differentiation of neuron-like cells. We used our conducting biodegradable ICPs to coat the inner walls of Nerve Guidance Channels and successfully used them to guide in vivo re-growth of severed sciatic nerves in rats. The objective of this Phase I SBIR project is to develop an optimal method to transfer wireless electromagnetic energy to a conductive, biodegradable polymer tube through a series of in vitro experiments. In the Phase II project we will use the method and device developed in Phase I to carry out non-invasive transcutaneous electrical stimulation of a conducting and biodegradable Nerve Guidance Channel in an animal model. We aim to demonstrate that transcutaneous electrical stimulation accelerates the healing of damaged peripheral nerve injuries. PUBLIC HEALTH RELEVANCE Biodegradable polymers recently developed by TDA Research, Inc. exhibit the benefit of being electrically conductive. Tests showed that these polymers, when excited by an electric field, facilitate and hasten the regeneration of nerve cells. When formed into a tubular shape, these polymers can be used in vivo to surround a severed nerve, stimulating and channeling new cell growth. Thus, the need for a transcutaneous method of applying the electrical stimulus arises. An optimal method of the electromagnetic transfer of energy to a conductive, biodegradable polymer tube will be empirically determined by performing a series of in vitro experiments. This research is essential to the future development of a transcutaneous stimulation system to promote in vivo nerve growth.
描述(由申请人提供):内部导电聚合物(ICP)具有良好的生物相容性,可用作基底,向成骨细胞、内皮细胞和神经元等锚定依赖性细胞输送电刺激。这种类型的刺激加速细胞的生长和增殖。在之前的NIH SBIR项目中,TDA Research,Inc.研究人员开发了可生物降解的ICP形式,并与德克萨斯大学奥斯汀分校合作,证明这些聚合物可用于向神经元样细胞提供体外电刺激。我们还证明了不同类型的电刺激可用于控制神经元样细胞的分化。我们使用我们的可生物降解的导电ICP来涂覆神经引导通道的内壁,并成功地使用它们来引导大鼠中切断的坐骨神经的体内再生长。第一阶段SBIR项目的目标是通过一系列体外实验,开发一种将无线电磁能量传输到导电、可生物降解聚合物管的最佳方法。在第二阶段项目中,我们将使用第一阶段开发的方法和设备,在动物模型中对传导和可生物降解的神经引导通道进行无创经皮电刺激。我们的目的是证明经皮电刺激加速周围神经损伤的愈合。公共卫生相关性TDA Research,Inc.最近开发的可生物降解聚合物。表现出导电的益处。测试表明,当这些聚合物被电场激发时,可以促进和加速神经细胞的再生。当形成管状时,这些聚合物可以在体内用于包围切断的神经,刺激和引导新细胞生长。因此,需要一种施加电刺激的经皮方法。将能量电磁传递到导电的、可生物降解的聚合物管的最佳方法将通过进行一系列体外实验来经验性地确定。这项研究是必不可少的经皮刺激系统,以促进在体内神经生长的未来发展。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Electric field stimulation through a biodegradable polypyrrole-co-polycaprolactone substrate enhances neural cell growth.
通过可生物降解的多吡咯-O-polycaprolactone底物通过可生物降解的电场刺激增强了神经细胞的生长。
- DOI:10.1002/jbm.a.34925
- 发表时间:2014-08
- 期刊:
- 影响因子:4.9
- 作者:Nguyen, Hieu T.;Sapp, Shawn;Wei, Claudia;Chow, Jacqueline K.;Alvin Nguyen;Coursen, Jeff;Luebben, Silvia;Chang, Emily;Ross, Robert;Schmidt, Christine E.
- 通讯作者:Schmidt, Christine E.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Silvia D Luebben其他文献
Silvia D Luebben的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Silvia D Luebben', 18)}}的其他基金
Tear-Resistant and Elastic Tissue Adhesive for Craniofacial Applications
适用于颅面应用的抗撕裂弹性组织粘合剂
- 批准号:
8393259 - 财政年份:2012
- 资助金额:
$ 23.38万 - 项目类别:
相似海外基金
Quantification of Neurovasculature Changes in a Post-Hemorrhagic Stroke Animal-Model
出血性中风后动物模型中神经血管变化的量化
- 批准号:
495434 - 财政年份:2023
- 资助金额:
$ 23.38万 - 项目类别:
Small animal model for evaluating the impacts of cleft lip repairing scar on craniofacial growth and development
评价唇裂修复疤痕对颅面生长发育影响的小动物模型
- 批准号:
10642519 - 财政年份:2023
- 资助金额:
$ 23.38万 - 项目类别:
Bioactive Injectable Cell Scaffold for Meniscus Injury Repair in a Large Animal Model
用于大型动物模型半月板损伤修复的生物活性可注射细胞支架
- 批准号:
10586596 - 财政年份:2023
- 资助金额:
$ 23.38万 - 项目类别:
A Comparison of Treatment Strategies for Recovery of Swallow and Swallow-Respiratory Coupling Following a Prolonged Liquid Diet in a Young Animal Model
幼年动物模型中长期流质饮食后吞咽恢复和吞咽呼吸耦合治疗策略的比较
- 批准号:
10590479 - 财政年份:2023
- 资助金额:
$ 23.38万 - 项目类别:
Diurnal grass rats as a novel animal model of seasonal affective disorder
昼夜草鼠作为季节性情感障碍的新型动物模型
- 批准号:
23K06011 - 财政年份:2023
- 资助金额:
$ 23.38万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Longitudinal Ocular Changes in Naturally Occurring Glaucoma Animal Model
自然发生的青光眼动物模型的纵向眼部变化
- 批准号:
10682117 - 财政年份:2023
- 资助金额:
$ 23.38万 - 项目类别:
A whole animal model for investigation of ingested nanoplastic mixtures and effects on genomic integrity and health
用于研究摄入的纳米塑料混合物及其对基因组完整性和健康影响的整体动物模型
- 批准号:
10708517 - 财政年份:2023
- 资助金额:
$ 23.38万 - 项目类别:
A Novel Large Animal Model for Studying the Developmental Potential and Function of LGR5 Stem Cells in Vivo and in Vitro
用于研究 LGR5 干细胞体内外发育潜力和功能的新型大型动物模型
- 批准号:
10575566 - 财政年份:2023
- 资助金额:
$ 23.38万 - 项目类别:
Elucidating the pathogenesis of a novel animal model mimicking chronic entrapment neuropathy
阐明模拟慢性卡压性神经病的新型动物模型的发病机制
- 批准号:
23K15696 - 财政年份:2023
- 资助金额:
$ 23.38万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
The effect of anti-oxidant on swallowing function in an animal model of dysphagia
抗氧化剂对吞咽困难动物模型吞咽功能的影响
- 批准号:
23K15867 - 财政年份:2023
- 资助金额:
$ 23.38万 - 项目类别:
Grant-in-Aid for Early-Career Scientists














{{item.name}}会员




