Computational Pipeline for Identification of Disease-Causing Variants in Genes of the Cardiac Sarcomere

用于鉴定心脏肌节基因致病变异的计算流程

基本信息

  • 批准号:
    10736459
  • 负责人:
  • 金额:
    $ 71.33万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-07-10 至 2027-06-30
  • 项目状态:
    未结题

项目摘要

PROJECT SUMMARY / ABSTRACT Contractile force in the heart is generated by densely packed subcellular structures known as sarcomeres. Mutations in sarcomeric genes have been repeatedly linked to potentially lethal conditions known as cardiomyopathies, including hypertrophic (HCM) and dilated (DCM) forms. Optimal clinical management of HCM/DCM requires identification of at-risk individuals before they experience symptoms. Genetic testing can be useful, but results are not always definitive enough to support clinical decision making. This is because genetic variants found in patients are often unique to their family. These so-called variants of unknown significance (VUS) could be pathogenic or benign. Unfortunately, testing each VUS experimentally is prohibitively expensive, and generic pathogenicity algorithms are proving unreliable for prediction of cardiomyopathies. The goal of this proposal is to create an accurate and scalable computational method for classifying sarcomeric variants of unknown significance so that more HCM/DCM families can benefit from genetic screening and early diagnosis. Our long-term approach to solving this critical shortcoming is to create a computational pipeline to predict pathogenicity of novel sarcomeric gene variants, providing cardiologists with a biophysical basis for performing risk stratification in HCM/DCM patient families. Our work during the last funding period was focused specifically on mutations to the protein tropomyosin (Tpm), leading to important milestones in genotype-phenotype predictive modeling. For this renewal, we aim to expand these capabilities to include characterization of highly prevalent VUS in Tpm’s binding partners, troponin I (TnI) and troponin T (TnT). This will widen the impact of our work, encompassing families with VUS in TPM1, TNNI3, or TNNT2. Breakthroughs documented in our recent published work on the actin/Tpm/troponin regulatory complex have allowed us to construct increasingly precise maps of the binding interactions among these proteins at an atomic level, including the specific amino acid sidechains upon which binding and regulatory function depend. Our hypothesis is that these refined structural interaction maps will allow us to make more accurate predictions of thin filament VUS pathogenicity using our computational pipeline. We will test this hypothesis in three aims. Aim 1 experiments will extend our preliminary tests of the interacting pairs hypothesis through the study of 18 additional mutations scattered strategically across our three proteins of interest. In Aim 2, twelve mutations in TPM1, TNNT2, and TNNI3 that are known to produce clinical disease in humans will be analyzed in our dual computational/experimental pipeline. These real-world cases will make it possible to define what constitutes a meaningful mutation-induced change in muscle function. Having established model accuracy (Aim 1) and thresholds of pathogenicity (Aim 2), in Aim 3 we will perform a computational screen of 200+ VUS from the ClinVar database and validate twelve of these HCM/DCM pathogenicity predictions in engineered heart tissues. This project will continue our successful efforts to achieve sarcomeric genotype-phenotype predictions.
项目摘要/摘要

项目成果

期刊论文数量(12)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
KBTBD13 and the ever-expanding sarcomeric universe.
KBTBD13 和不断扩大的肌节宇宙。
Potential impacts of the cardiac troponin I mobile domain on myofilament activation and relaxation.
Modelling sarcomeric cardiomyopathies with human cardiomyocytes derived from induced pluripotent stem cells.
  • DOI:
    10.1113/jp276753
  • 发表时间:
    2020-07
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sewanan LR;Campbell SG
  • 通讯作者:
    Campbell SG
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

STUART G CAMPBELL其他文献

STUART G CAMPBELL的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('STUART G CAMPBELL', 18)}}的其他基金

Establishing and reversing the functional consequences of Titin truncation mutations
建立并逆转肌联蛋白截断突变的功能后果
  • 批准号:
    10510011
  • 财政年份:
    2022
  • 资助金额:
    $ 71.33万
  • 项目类别:
Establishing and reversing the functional consequences of Titin truncation mutations
建立并逆转肌联蛋白截断突变的功能后果
  • 批准号:
    10640157
  • 财政年份:
    2022
  • 资助金额:
    $ 71.33万
  • 项目类别:
Computer modeling of myosin binding protein C and its effects on cardiac contraction
肌球蛋白结合蛋白 C 的计算机建模及其对心脏收缩的影响
  • 批准号:
    10371076
  • 财政年份:
    2019
  • 资助金额:
    $ 71.33万
  • 项目类别:
Computer modeling of myosin binding protein C and its effects on cardiac contraction
肌球蛋白结合蛋白 C 的计算机建模及其对心脏收缩的影响
  • 批准号:
    9903433
  • 财政年份:
    2019
  • 资助金额:
    $ 71.33万
  • 项目类别:
Revealing Pathomechanisms of Mutant TPM1 Through a Hybrid Computational-Experimental Approach
通过混合计算-实验方法揭示突变 TPM1 的病理机制
  • 批准号:
    10358783
  • 财政年份:
    2017
  • 资助金额:
    $ 71.33万
  • 项目类别:
Revealing Pathomechanisms of Mutant TPM1 Through a Hybrid Computational-Experimental Approach
通过混合计算-实验方法揭示突变 TPM1 的病理机制
  • 批准号:
    9398261
  • 财政年份:
    2017
  • 资助金额:
    $ 71.33万
  • 项目类别:
Revealing Pathomechanisms of Mutant TPM1 Through a Hybrid Computational-Experimental Approach
通过混合计算-实验方法揭示突变 TPM1 的病理机制
  • 批准号:
    9983135
  • 财政年份:
    2017
  • 资助金额:
    $ 71.33万
  • 项目类别:
Revealing Pathomechanisms of Mutant TPM1 Through a Hybrid Computational-Experimental Approach
通过混合计算-实验方法揭示突变 TPM1 的病理机制
  • 批准号:
    10221767
  • 财政年份:
    2017
  • 资助金额:
    $ 71.33万
  • 项目类别:
Engineered Tissue for Biomechanical Phenotyping of Cardiomyopathy Patients
用于心肌病患者生物力学表型分析的工程组织
  • 批准号:
    8974854
  • 财政年份:
    2014
  • 资助金额:
    $ 71.33万
  • 项目类别:

相似海外基金

CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 71.33万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 71.33万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 71.33万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 71.33万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 71.33万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 71.33万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 71.33万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 71.33万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 71.33万
  • 项目类别:
    Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 71.33万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了