Computational Pipeline for Identification of Disease-Causing Variants in Genes of the Cardiac Sarcomere
用于鉴定心脏肌节基因致病变异的计算流程
基本信息
- 批准号:10736459
- 负责人:
- 金额:$ 71.33万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-07-10 至 2027-06-30
- 项目状态:未结题
- 来源:
- 关键词:ActinsAlgorithmsAmino AcidsBehaviorBenchmarkingBenignBindingBiological AssayBiophysicsCardiacCardiomyopathiesCellsClassificationClinVarClinicalClinical ManagementClinical ResearchComplexComputer ModelsComputing MethodologiesDataDatabasesDiseaseEarly DiagnosisEarly identificationEnsureEvaluationFamilyFundingGene MutationGenesGenetic ScreeningGenotypeGoalsHealthHeartHeart DiseasesHumanHuman EngineeringHypertrophyIn VitroIndividualInduced MutationLinkMapsMeasurableMethodsModelingMolecularMuscle ContractionMuscle functionMutationOutcomePathogenicityPatientsPhenotypePopulationProteinsPublishingRegulationRiskRoleSarcomeresStructural ModelsSubcellular structureSymptomsTestingThin FilamentTropomyosinTroponinTroponin ITroponin TVariantWorkcardiac tissue engineeringcell motilityclinical decision supportclinical decision-makingcomputational pipelinesdesignexperienceexperimental studygenetic testinggenetic variantinterestlink proteinmolecular dynamicsmulti-scale modelingnovelpredictive modelingprotein protein interactionrational designrisk stratificationtoolvariant of unknown significance
项目摘要
PROJECT SUMMARY / ABSTRACT
Contractile force in the heart is generated by densely packed subcellular structures known as sarcomeres.
Mutations in sarcomeric genes have been repeatedly linked to potentially lethal conditions known as
cardiomyopathies, including hypertrophic (HCM) and dilated (DCM) forms. Optimal clinical management of
HCM/DCM requires identification of at-risk individuals before they experience symptoms. Genetic testing can
be useful, but results are not always definitive enough to support clinical decision making. This is because
genetic variants found in patients are often unique to their family. These so-called variants of unknown
significance (VUS) could be pathogenic or benign. Unfortunately, testing each VUS experimentally is
prohibitively expensive, and generic pathogenicity algorithms are proving unreliable for prediction of
cardiomyopathies. The goal of this proposal is to create an accurate and scalable computational method for
classifying sarcomeric variants of unknown significance so that more HCM/DCM families can benefit from
genetic screening and early diagnosis. Our long-term approach to solving this critical shortcoming is to create a
computational pipeline to predict pathogenicity of novel sarcomeric gene variants, providing cardiologists with a
biophysical basis for performing risk stratification in HCM/DCM patient families. Our work during the last
funding period was focused specifically on mutations to the protein tropomyosin (Tpm), leading to important
milestones in genotype-phenotype predictive modeling. For this renewal, we aim to expand these capabilities
to include characterization of highly prevalent VUS in Tpm’s binding partners, troponin I (TnI) and troponin T
(TnT). This will widen the impact of our work, encompassing families with VUS in TPM1, TNNI3, or TNNT2.
Breakthroughs documented in our recent published work on the actin/Tpm/troponin regulatory complex have
allowed us to construct increasingly precise maps of the binding interactions among these proteins at an
atomic level, including the specific amino acid sidechains upon which binding and regulatory function depend.
Our hypothesis is that these refined structural interaction maps will allow us to make more accurate predictions
of thin filament VUS pathogenicity using our computational pipeline. We will test this hypothesis in three aims.
Aim 1 experiments will extend our preliminary tests of the interacting pairs hypothesis through the study of 18
additional mutations scattered strategically across our three proteins of interest. In Aim 2, twelve mutations in
TPM1, TNNT2, and TNNI3 that are known to produce clinical disease in humans will be analyzed in our dual
computational/experimental pipeline. These real-world cases will make it possible to define what constitutes a
meaningful mutation-induced change in muscle function. Having established model accuracy (Aim 1) and
thresholds of pathogenicity (Aim 2), in Aim 3 we will perform a computational screen of 200+ VUS from the
ClinVar database and validate twelve of these HCM/DCM pathogenicity predictions in engineered heart
tissues. This project will continue our successful efforts to achieve sarcomeric genotype-phenotype predictions.
项目总结/摘要
心脏中的收缩力是由称为肌节的密集亚细胞结构产生的。
肌节基因的突变已经被反复与潜在的致命疾病联系起来,
心肌病,包括肥厚型(HCM)和扩张型(DCM)。最佳临床管理
HCM/DCM需要在出现症状之前识别风险个体。基因检测可以
这些结果可能是有用的,但结果并不总是足以支持临床决策。这是因为
在患者体内发现的遗传变异通常是其家族所独有的。这些所谓的未知变量
显著性(VUS)可以是致病的或良性的。不幸的是,对每个VUS进行实验测试,
昂贵得令人望而却步,通用致病性算法被证明不可靠的预测
心肌病该提案的目标是创建一个准确和可扩展的计算方法,
对意义未知的肌节变异进行分类,以便更多的HCM/DCM家族可以从以下方面受益:
基因筛查和早期诊断。我们解决这一关键缺陷的长期方法是创建一个
计算管道来预测新的肌节基因变异的致病性,为心脏病学家提供了一个
在HCM/DCM患者家族中进行风险分层的生物物理学基础。我们在过去一年中的工作
基金期间特别关注蛋白质原肌球蛋白(Tpm)的突变,导致重要的
基因型-表型预测建模的里程碑。对于这次更新,我们的目标是扩大这些能力,
包括Tpm结合伴侣、肌钙蛋白I(TnI)和肌钙蛋白T中高度流行的VUS的表征
(TnT)。这将扩大我们工作的影响,包括家庭与VUS在TPM 1,TNNI 3,或TNNT 2。
在我们最近发表的关于肌动蛋白/Tpm/肌钙蛋白调节复合物的工作中,
使我们能够构建这些蛋白质之间的结合相互作用的越来越精确的地图,
原子水平,包括结合和调节功能所依赖的特定氨基酸侧链。
我们的假设是,这些精细的结构相互作用图将使我们能够做出更准确的预测
细丝状病毒的致病性。我们将从三个方面来检验这一假设。
Aim 1实验将通过对18个实验的研究,
另外的突变策略性地分散在我们感兴趣的三种蛋白质中。在目标2中,
已知在人类中产生临床疾病的TPM 1、TNNT 2和TNNI 3将在我们的双重研究中进行分析。
计算/实验流水线。这些真实世界的案例将使我们有可能定义什么构成了一个
有意义的突变引起的肌肉功能变化。在建立了模型精度(目标1)之后,
致病性阈值(目标2),在目标3中,我们将从
ClinVar数据库,并在工程心脏中验证了其中12个HCM/DCM致病性预测
组织中该项目将继续我们成功的努力,实现肌节基因型-表型预测。
项目成果
期刊论文数量(12)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
KBTBD13 and the ever-expanding sarcomeric universe.
KBTBD13 和不断扩大的肌节宇宙。
- DOI:10.1172/jci132954
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Campbell SG
- 通讯作者:Campbell SG
Potential impacts of the cardiac troponin I mobile domain on myofilament activation and relaxation.
- DOI:10.1016/j.yjmcc.2021.02.012
- 发表时间:2021-06
- 期刊:
- 影响因子:5
- 作者:Creso JG;Campbell SG
- 通讯作者:Campbell SG
Modelling sarcomeric cardiomyopathies with human cardiomyocytes derived from induced pluripotent stem cells.
- DOI:10.1113/jp276753
- 发表时间:2020-07
- 期刊:
- 影响因子:0
- 作者:Sewanan LR;Campbell SG
- 通讯作者:Campbell SG
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
STUART G CAMPBELL其他文献
STUART G CAMPBELL的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('STUART G CAMPBELL', 18)}}的其他基金
Establishing and reversing the functional consequences of Titin truncation mutations
建立并逆转肌联蛋白截断突变的功能后果
- 批准号:
10510011 - 财政年份:2022
- 资助金额:
$ 71.33万 - 项目类别:
Establishing and reversing the functional consequences of Titin truncation mutations
建立并逆转肌联蛋白截断突变的功能后果
- 批准号:
10640157 - 财政年份:2022
- 资助金额:
$ 71.33万 - 项目类别:
Computer modeling of myosin binding protein C and its effects on cardiac contraction
肌球蛋白结合蛋白 C 的计算机建模及其对心脏收缩的影响
- 批准号:
10371076 - 财政年份:2019
- 资助金额:
$ 71.33万 - 项目类别:
Computer modeling of myosin binding protein C and its effects on cardiac contraction
肌球蛋白结合蛋白 C 的计算机建模及其对心脏收缩的影响
- 批准号:
9903433 - 财政年份:2019
- 资助金额:
$ 71.33万 - 项目类别:
Revealing Pathomechanisms of Mutant TPM1 Through a Hybrid Computational-Experimental Approach
通过混合计算-实验方法揭示突变 TPM1 的病理机制
- 批准号:
10358783 - 财政年份:2017
- 资助金额:
$ 71.33万 - 项目类别:
Revealing Pathomechanisms of Mutant TPM1 Through a Hybrid Computational-Experimental Approach
通过混合计算-实验方法揭示突变 TPM1 的病理机制
- 批准号:
9398261 - 财政年份:2017
- 资助金额:
$ 71.33万 - 项目类别:
Revealing Pathomechanisms of Mutant TPM1 Through a Hybrid Computational-Experimental Approach
通过混合计算-实验方法揭示突变 TPM1 的病理机制
- 批准号:
9983135 - 财政年份:2017
- 资助金额:
$ 71.33万 - 项目类别:
Revealing Pathomechanisms of Mutant TPM1 Through a Hybrid Computational-Experimental Approach
通过混合计算-实验方法揭示突变 TPM1 的病理机制
- 批准号:
10221767 - 财政年份:2017
- 资助金额:
$ 71.33万 - 项目类别:
Engineered Tissue for Biomechanical Phenotyping of Cardiomyopathy Patients
用于心肌病患者生物力学表型分析的工程组织
- 批准号:
8974854 - 财政年份:2014
- 资助金额:
$ 71.33万 - 项目类别:
相似海外基金
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 71.33万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 71.33万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 71.33万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 71.33万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 71.33万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 71.33万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 71.33万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 71.33万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 71.33万 - 项目类别:
Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 71.33万 - 项目类别:
Research Grant














{{item.name}}会员




