Revealing Pathomechanisms of Mutant TPM1 Through a Hybrid Computational-Experimental Approach
通过混合计算-实验方法揭示突变 TPM1 的病理机制
基本信息
- 批准号:9398261
- 负责人:
- 金额:$ 57.84万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-07-10 至 2022-06-30
- 项目状态:已结题
- 来源:
- 关键词:Abnormal CellActinsAffectAlgorithmsBehaviorBenignBiological AssayBiophysicsCardiacCardiac Muscle ContractionCardiac MyocytesCardiovascular DiseasesCell LineCellsCerealsClassificationClinicalClinical ManagementCompanionsComplexComputer SimulationComputing MethodologiesDataDatabasesDiseaseEarly identificationElectron MicroscopyEngineeringEvaluationEventFamilyFilamentGene MutationGeneric DrugsGenesGeneticGenetic screening methodGenomicsGenotypeGoalsHeartHeart DiseasesHumanHuman EngineeringHybridsHypertrophic CardiomyopathyHypertrophyIn VitroInborn Genetic DiseasesIndividualInvestigationIsometric ExerciseKnowledgeLeadLifeLinkMeasuresMechanicsMethodologyMethodsMicrofilamentsModelingMolecularMolecular StructureMuscleMuscle ContractionMuscle ProteinsMutateMutationMyocardiumOutcomePathogenicityPatientsPatternPhenotypePhysiologicalPropertyProteinsRegulationResourcesRiskSarcomeresSavingsSlideSolidStatistical MechanicsStructure-Activity RelationshipSurfaceSystemTechniquesTechnologyTest ResultTestingTimeTissuesTransfectionTropomyosinValidationVariantViralWorkbasecell growthcell motilityclinical practiceexperienceexperimental studyflexibilitygenetic informationgenetic makeupgenetic variantinduced pluripotent stem cellmechanical loadmolecular dynamicsmolecular scalemulti-scale modelingmutantnoveloverexpressionprediction algorithmpredictive modelingresponsestem cell biologystructural biology
项目摘要
PROJECT SUMMARY/ABSTRACT
Revealing Pathomechanisms of Mutant TPM1 Through a Hybrid Computational-Experimental Approach
The goal of this proposal is to develop and validate multiscale computational methods that can predict cardiac
muscle behavior on the basis of genetic makeup. Single gene mutations have been identified as causative
factors in a multitude of cardiovascular disorders, thanks to the emergence of genomic sequencing
technologies. Genetic information has the power to transform clinical practice in many ways, but its potential
remains unrealized because of major knowledge gaps in the chain of events linking mutations to observable
disease states. Our goal is to unlock the rich molecular information that resides in known mutations by using
new multiscale models that can predict molecular-scale phenomena and project them upward to scales of
physiological relevance. We are poised to make key progress toward this goal thanks to an interdisciplinary
team that includes experts in multiscale modeling, structural biology, biophysics, muscle mechanics, and stem
cell biology. We will focus on tropomyosin (TPM1), a protein that regulates cardiac muscle contraction and
which, when mutated, can lead to a life-threatening disease known as hypertrophic cardiomyopathy (HCM). At
the cellular level, HCM involves abnormal cell growth due to increased expression of muscle proteins, but
exactly how this overexpression is triggered by tropomyosin mutations is not known. In order to demonstrate
that this type of genotype-phenotype gap can be closed by multiscale modeling, we will trace the effects of five
tropomyosin mutations across molecular, sub-cellular, and cellular scales. In Aim 1, we will perform molecular
dynamics simulations to predict changes in tropomyosin flexibility and actin surface interactions caused by
mutations. Principles of statistical mechanics will be used to embed these changes within a model of the
macromolecular actin filament complex. This scale-crossing technique will enable prediction of how mutations
affect filament behavior in vitro. Companion experiments will test the model predictions. For Aim 2, the actin
filament model will be placed within a representation of the cardiac sarcomere in order to predict dynamic
muscle twitch responses for each mutant. These responses will be checked for accuracy by viral expression of
mutant tropomyosins in human-derived engineered heart tissues. Aim 3 will use the models developed in Aims
1 & 2 to predict hypertrophic pathogenicity for 20 TPM1 variants identified in patients but never validated
experimentally. Predictions will be checked by placing some of the analyzed variants into engineered heart
tissues and measuring their hypertrophic responses. Feasibility of these aims is high because our team has
the unique expertise required to relate the structural properties of mutant tropomyosins to their physiological
behavior. In demonstrating a successful genotype-phenotype modeling approach, our work will pave the way
for mechanistic investigation of many other cardiovascular disorders with genetic origins.
项目摘要/摘要
用计算与实验相结合的方法揭示突变型TPM1的致病机制
这项提议的目标是开发和验证能够预测心脏疾病的多尺度计算方法
肌肉的行为是基于基因组成的。单基因突变已被确定为致病因素
由于基因组测序的出现,多种心血管疾病的因素
技术。遗传信息在许多方面都有能力改变临床实践,但它的潜力
仍然没有实现,因为在将突变与可观察到的事件链联系起来的重大知识缺口
疾病状态。我们的目标是解锁驻留在已知突变中的丰富分子信息
新的多尺度模型可以预测分子尺度的现象并将其向上投影到
生理上的相关性。我们准备在这一目标方面取得关键进展,这要归功于一项跨学科的
包括多尺度建模、结构生物学、生物物理学、肌肉力学和茎的专家的团队
细胞生物学。我们将关注原肌球蛋白(TPM1),这是一种调节心肌收缩和
当基因突变时,可能会导致一种名为肥厚型心肌病(HCM)的危及生命的疾病。在…
在细胞水平上,HCM涉及到由于肌肉蛋白表达增加而导致的细胞异常生长,但
这种过度表达是如何由原肌球蛋白突变触发的,目前尚不清楚。为了证明
这种类型的基因型-表型差距可以通过多尺度建模来弥合,我们将跟踪五个因素的影响
跨分子、亚细胞和细胞尺度的原肌球蛋白突变。在目标1中,我们将执行分子
预测原肌球蛋白柔韧性和肌动蛋白表面相互作用变化的动力学模拟
突变。统计力学的原理将被用来将这些变化嵌入到
大分子肌动蛋白细丝复合体。这种比例交叉技术将能够预测突变是如何
影响灯丝的体外行为。配套的实验将检验模型的预测。对于目标2,肌动蛋白
细丝模型将被放置在心脏肌节的表示中,以预测动态
每个突变体的肌肉抽动反应。这些反应将通过病毒表达来检查准确性
人类来源的工程化心脏组织中的突变原肌球蛋白。AIM 3将使用在AIMS中开发的模型
1和2预测患者中发现但从未证实的20种TPM1变异的肥厚性致病作用
试验性的。预测将通过将一些分析的变体放入工程心脏来检验
并测量它们的肥大反应。这些目标的可行性很高,因为我们的团队
将突变的原肌球蛋白的结构特性与其生理特性联系起来所需的独特专业知识
行为。在演示一种成功的基因-表型建模方法时,我们的工作将为
用于许多其他心血管疾病的机制研究,这些疾病源于基因。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
STUART G CAMPBELL其他文献
STUART G CAMPBELL的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('STUART G CAMPBELL', 18)}}的其他基金
Establishing and reversing the functional consequences of Titin truncation mutations
建立并逆转肌联蛋白截断突变的功能后果
- 批准号:
10510011 - 财政年份:2022
- 资助金额:
$ 57.84万 - 项目类别:
Establishing and reversing the functional consequences of Titin truncation mutations
建立并逆转肌联蛋白截断突变的功能后果
- 批准号:
10640157 - 财政年份:2022
- 资助金额:
$ 57.84万 - 项目类别:
Computer modeling of myosin binding protein C and its effects on cardiac contraction
肌球蛋白结合蛋白 C 的计算机建模及其对心脏收缩的影响
- 批准号:
10371076 - 财政年份:2019
- 资助金额:
$ 57.84万 - 项目类别:
Computer modeling of myosin binding protein C and its effects on cardiac contraction
肌球蛋白结合蛋白 C 的计算机建模及其对心脏收缩的影响
- 批准号:
9903433 - 财政年份:2019
- 资助金额:
$ 57.84万 - 项目类别:
Revealing Pathomechanisms of Mutant TPM1 Through a Hybrid Computational-Experimental Approach
通过混合计算-实验方法揭示突变 TPM1 的病理机制
- 批准号:
10358783 - 财政年份:2017
- 资助金额:
$ 57.84万 - 项目类别:
Revealing Pathomechanisms of Mutant TPM1 Through a Hybrid Computational-Experimental Approach
通过混合计算-实验方法揭示突变 TPM1 的病理机制
- 批准号:
9983135 - 财政年份:2017
- 资助金额:
$ 57.84万 - 项目类别:
Revealing Pathomechanisms of Mutant TPM1 Through a Hybrid Computational-Experimental Approach
通过混合计算-实验方法揭示突变 TPM1 的病理机制
- 批准号:
10221767 - 财政年份:2017
- 资助金额:
$ 57.84万 - 项目类别:
Computational Pipeline for Identification of Disease-Causing Variants in Genes of the Cardiac Sarcomere
用于鉴定心脏肌节基因致病变异的计算流程
- 批准号:
10736459 - 财政年份:2017
- 资助金额:
$ 57.84万 - 项目类别:
Engineered Tissue for Biomechanical Phenotyping of Cardiomyopathy Patients
用于心肌病患者生物力学表型分析的工程组织
- 批准号:
8974854 - 财政年份:2014
- 资助金额:
$ 57.84万 - 项目类别:
相似海外基金
A novel motility system driven by two classes of bacterial actins MreB
由两类细菌肌动蛋白 MreB 驱动的新型运动系统
- 批准号:
22KJ2613 - 财政年份:2023
- 资助金额:
$ 57.84万 - 项目类别:
Grant-in-Aid for JSPS Fellows
The structural basis of plasmid segregation by bacterial actins
细菌肌动蛋白分离质粒的结构基础
- 批准号:
342887 - 财政年份:2016
- 资助金额:
$ 57.84万 - 项目类别:
Operating Grants
The structural basis for plasmid segregation by bacterial actins
细菌肌动蛋白分离质粒的结构基础
- 批准号:
278338 - 财政年份:2013
- 资助金额:
$ 57.84万 - 项目类别:
Operating Grants
Cytoplasmic Actins in Maintenance of Muscle Mitochondria
细胞质肌动蛋白在维持肌肉线粒体中的作用
- 批准号:
8505938 - 财政年份:2012
- 资助金额:
$ 57.84万 - 项目类别:
Differential Expression of the Diverse Plant Actins
多种植物肌动蛋白的差异表达
- 批准号:
7931495 - 财政年份:2009
- 资助金额:
$ 57.84万 - 项目类别:
Studies on how actins and microtubules are coordinated and its relevancy.
研究肌动蛋白和微管如何协调及其相关性。
- 批准号:
19390048 - 财政年份:2007
- 资助金额:
$ 57.84万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Interaction of myosin with monomeric actins
肌球蛋白与单体肌动蛋白的相互作用
- 批准号:
5311554 - 财政年份:2001
- 资助金额:
$ 57.84万 - 项目类别:
Priority Programmes
STRUCTURE/INTERACTIONS OF ACTINS AND ACTIN-BINDING PROTEIN
肌动蛋白和肌动蛋白结合蛋白的结构/相互作用
- 批准号:
6316669 - 财政年份:2000
- 资助金额:
$ 57.84万 - 项目类别:














{{item.name}}会员




