Revealing Pathomechanisms of Mutant TPM1 Through a Hybrid Computational-Experimental Approach
通过混合计算-实验方法揭示突变 TPM1 的病理机制
基本信息
- 批准号:9398261
- 负责人:
- 金额:$ 57.84万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-07-10 至 2022-06-30
- 项目状态:已结题
- 来源:
- 关键词:Abnormal CellActinsAffectAlgorithmsBehaviorBenignBiological AssayBiophysicsCardiacCardiac Muscle ContractionCardiac MyocytesCardiovascular DiseasesCell LineCellsCerealsClassificationClinicalClinical ManagementCompanionsComplexComputer SimulationComputing MethodologiesDataDatabasesDiseaseEarly identificationElectron MicroscopyEngineeringEvaluationEventFamilyFilamentGene MutationGeneric DrugsGenesGeneticGenetic screening methodGenomicsGenotypeGoalsHeartHeart DiseasesHumanHuman EngineeringHybridsHypertrophic CardiomyopathyHypertrophyIn VitroInborn Genetic DiseasesIndividualInvestigationIsometric ExerciseKnowledgeLeadLifeLinkMeasuresMechanicsMethodologyMethodsMicrofilamentsModelingMolecularMolecular StructureMuscleMuscle ContractionMuscle ProteinsMutateMutationMyocardiumOutcomePathogenicityPatientsPatternPhenotypePhysiologicalPropertyProteinsRegulationResourcesRiskSarcomeresSavingsSlideSolidStatistical MechanicsStructure-Activity RelationshipSurfaceSystemTechniquesTechnologyTest ResultTestingTimeTissuesTransfectionTropomyosinValidationVariantViralWorkbasecell growthcell motilityclinical practiceexperienceexperimental studyflexibilitygenetic informationgenetic makeupgenetic variantinduced pluripotent stem cellmechanical loadmolecular dynamicsmolecular scalemulti-scale modelingmutantnoveloverexpressionprediction algorithmpredictive modelingresponsestem cell biologystructural biology
项目摘要
PROJECT SUMMARY/ABSTRACT
Revealing Pathomechanisms of Mutant TPM1 Through a Hybrid Computational-Experimental Approach
The goal of this proposal is to develop and validate multiscale computational methods that can predict cardiac
muscle behavior on the basis of genetic makeup. Single gene mutations have been identified as causative
factors in a multitude of cardiovascular disorders, thanks to the emergence of genomic sequencing
technologies. Genetic information has the power to transform clinical practice in many ways, but its potential
remains unrealized because of major knowledge gaps in the chain of events linking mutations to observable
disease states. Our goal is to unlock the rich molecular information that resides in known mutations by using
new multiscale models that can predict molecular-scale phenomena and project them upward to scales of
physiological relevance. We are poised to make key progress toward this goal thanks to an interdisciplinary
team that includes experts in multiscale modeling, structural biology, biophysics, muscle mechanics, and stem
cell biology. We will focus on tropomyosin (TPM1), a protein that regulates cardiac muscle contraction and
which, when mutated, can lead to a life-threatening disease known as hypertrophic cardiomyopathy (HCM). At
the cellular level, HCM involves abnormal cell growth due to increased expression of muscle proteins, but
exactly how this overexpression is triggered by tropomyosin mutations is not known. In order to demonstrate
that this type of genotype-phenotype gap can be closed by multiscale modeling, we will trace the effects of five
tropomyosin mutations across molecular, sub-cellular, and cellular scales. In Aim 1, we will perform molecular
dynamics simulations to predict changes in tropomyosin flexibility and actin surface interactions caused by
mutations. Principles of statistical mechanics will be used to embed these changes within a model of the
macromolecular actin filament complex. This scale-crossing technique will enable prediction of how mutations
affect filament behavior in vitro. Companion experiments will test the model predictions. For Aim 2, the actin
filament model will be placed within a representation of the cardiac sarcomere in order to predict dynamic
muscle twitch responses for each mutant. These responses will be checked for accuracy by viral expression of
mutant tropomyosins in human-derived engineered heart tissues. Aim 3 will use the models developed in Aims
1 & 2 to predict hypertrophic pathogenicity for 20 TPM1 variants identified in patients but never validated
experimentally. Predictions will be checked by placing some of the analyzed variants into engineered heart
tissues and measuring their hypertrophic responses. Feasibility of these aims is high because our team has
the unique expertise required to relate the structural properties of mutant tropomyosins to their physiological
behavior. In demonstrating a successful genotype-phenotype modeling approach, our work will pave the way
for mechanistic investigation of many other cardiovascular disorders with genetic origins.
项目总结/文摘
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
STUART G CAMPBELL其他文献
STUART G CAMPBELL的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('STUART G CAMPBELL', 18)}}的其他基金
Establishing and reversing the functional consequences of Titin truncation mutations
建立并逆转肌联蛋白截断突变的功能后果
- 批准号:
10510011 - 财政年份:2022
- 资助金额:
$ 57.84万 - 项目类别:
Establishing and reversing the functional consequences of Titin truncation mutations
建立并逆转肌联蛋白截断突变的功能后果
- 批准号:
10640157 - 财政年份:2022
- 资助金额:
$ 57.84万 - 项目类别:
Computer modeling of myosin binding protein C and its effects on cardiac contraction
肌球蛋白结合蛋白 C 的计算机建模及其对心脏收缩的影响
- 批准号:
10371076 - 财政年份:2019
- 资助金额:
$ 57.84万 - 项目类别:
Computer modeling of myosin binding protein C and its effects on cardiac contraction
肌球蛋白结合蛋白 C 的计算机建模及其对心脏收缩的影响
- 批准号:
9903433 - 财政年份:2019
- 资助金额:
$ 57.84万 - 项目类别:
Revealing Pathomechanisms of Mutant TPM1 Through a Hybrid Computational-Experimental Approach
通过混合计算-实验方法揭示突变 TPM1 的病理机制
- 批准号:
10358783 - 财政年份:2017
- 资助金额:
$ 57.84万 - 项目类别:
Revealing Pathomechanisms of Mutant TPM1 Through a Hybrid Computational-Experimental Approach
通过混合计算-实验方法揭示突变 TPM1 的病理机制
- 批准号:
9983135 - 财政年份:2017
- 资助金额:
$ 57.84万 - 项目类别:
Revealing Pathomechanisms of Mutant TPM1 Through a Hybrid Computational-Experimental Approach
通过混合计算-实验方法揭示突变 TPM1 的病理机制
- 批准号:
10221767 - 财政年份:2017
- 资助金额:
$ 57.84万 - 项目类别:
Computational Pipeline for Identification of Disease-Causing Variants in Genes of the Cardiac Sarcomere
用于鉴定心脏肌节基因致病变异的计算流程
- 批准号:
10736459 - 财政年份:2017
- 资助金额:
$ 57.84万 - 项目类别:
Engineered Tissue for Biomechanical Phenotyping of Cardiomyopathy Patients
用于心肌病患者生物力学表型分析的工程组织
- 批准号:
8974854 - 财政年份:2014
- 资助金额:
$ 57.84万 - 项目类别:
相似海外基金
A novel motility system driven by two classes of bacterial actins MreB
由两类细菌肌动蛋白 MreB 驱动的新型运动系统
- 批准号:
22KJ2613 - 财政年份:2023
- 资助金额:
$ 57.84万 - 项目类别:
Grant-in-Aid for JSPS Fellows
The structural basis of plasmid segregation by bacterial actins
细菌肌动蛋白分离质粒的结构基础
- 批准号:
342887 - 财政年份:2016
- 资助金额:
$ 57.84万 - 项目类别:
Operating Grants
The structural basis for plasmid segregation by bacterial actins
细菌肌动蛋白分离质粒的结构基础
- 批准号:
278338 - 财政年份:2013
- 资助金额:
$ 57.84万 - 项目类别:
Operating Grants
Cytoplasmic Actins in Maintenance of Muscle Mitochondria
细胞质肌动蛋白在维持肌肉线粒体中的作用
- 批准号:
8505938 - 财政年份:2012
- 资助金额:
$ 57.84万 - 项目类别:
Differential Expression of the Diverse Plant Actins
多种植物肌动蛋白的差异表达
- 批准号:
7931495 - 财政年份:2009
- 资助金额:
$ 57.84万 - 项目类别:
Studies on how actins and microtubules are coordinated and its relevancy.
研究肌动蛋白和微管如何协调及其相关性。
- 批准号:
19390048 - 财政年份:2007
- 资助金额:
$ 57.84万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Interaction of myosin with monomeric actins
肌球蛋白与单体肌动蛋白的相互作用
- 批准号:
5311554 - 财政年份:2001
- 资助金额:
$ 57.84万 - 项目类别:
Priority Programmes
STRUCTURE/INTERACTIONS OF ACTINS AND ACTIN-BINDING PROTEIN
肌动蛋白和肌动蛋白结合蛋白的结构/相互作用
- 批准号:
6316669 - 财政年份:2000
- 资助金额:
$ 57.84万 - 项目类别:














{{item.name}}会员




