Revealing Pathomechanisms of Mutant TPM1 Through a Hybrid Computational-Experimental Approach
通过混合计算-实验方法揭示突变 TPM1 的病理机制
基本信息
- 批准号:9983135
- 负责人:
- 金额:$ 54.83万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-07-10 至 2022-06-30
- 项目状态:已结题
- 来源:
- 关键词:Abnormal CellActinsAffectAlgorithmsBehaviorBenignBiological AssayBiophysicsCardiacCardiac Muscle ContractionCardiac MyocytesCardiovascular DiseasesCell LineCellsClassificationClinVarClinical ManagementCompanionsComplexComputer ModelsComputing MethodologiesDataDatabasesDiseaseEarly identificationElectron MicroscopyEvaluationEventExposure toFamilyFilamentGene MutationGenesGeneticGenomicsGenotypeGoalsGrainHeart DiseasesHereditary DiseaseHumanHuman EngineeringHybridsHypertrophic CardiomyopathyHypertrophyIn VitroIndividualInvestigationIsometric ExerciseKnowledgeLeadLifeLinkMeasuresMechanicsMethodologyMethodsMicrofilamentsModelingMolecularMolecular StructureMuscleMuscle ContractionMuscle ProteinsMutateMutationMyocardiumOutcomePathogenicityPatientsPatternPhenotypePhysiologicalPropertyProteinsRegulationResourcesRiskSarcomeresSavingsSlideSolidStatistical MechanicsStructureStructure-Activity RelationshipSurfaceSystemTechniquesTechnologyTest ResultTestingTimeTissuesTransfectionTropomyosinValidationVariantViralWorkbasebehavior in vitrocardiac tissue engineeringcell growthcell motilityclinical decision supportclinical practicecomputational pipelinesexperienceexperimental studyflexibilitygenetic informationgenetic makeupgenetic testinggenetic variantin silicoinduced pluripotent stem cellmechanical loadmolecular dynamicsmolecular scalemulti-scale modelingmutantnoveloverexpressionprediction algorithmpredictive modelingresponsestem cell biologystructural biology
项目摘要
PROJECT SUMMARY/ABSTRACT
Revealing Pathomechanisms of Mutant TPM1 Through a Hybrid Computational-Experimental Approach
The goal of this proposal is to develop and validate multiscale computational methods that can predict cardiac
muscle behavior on the basis of genetic makeup. Single gene mutations have been identified as causative
factors in a multitude of cardiovascular disorders, thanks to the emergence of genomic sequencing
technologies. Genetic information has the power to transform clinical practice in many ways, but its potential
remains unrealized because of major knowledge gaps in the chain of events linking mutations to observable
disease states. Our goal is to unlock the rich molecular information that resides in known mutations by using
new multiscale models that can predict molecular-scale phenomena and project them upward to scales of
physiological relevance. We are poised to make key progress toward this goal thanks to an interdisciplinary
team that includes experts in multiscale modeling, structural biology, biophysics, muscle mechanics, and stem
cell biology. We will focus on tropomyosin (TPM1), a protein that regulates cardiac muscle contraction and
which, when mutated, can lead to a life-threatening disease known as hypertrophic cardiomyopathy (HCM). At
the cellular level, HCM involves abnormal cell growth due to increased expression of muscle proteins, but
exactly how this overexpression is triggered by tropomyosin mutations is not known. In order to demonstrate
that this type of genotype-phenotype gap can be closed by multiscale modeling, we will trace the effects of five
tropomyosin mutations across molecular, sub-cellular, and cellular scales. In Aim 1, we will perform molecular
dynamics simulations to predict changes in tropomyosin flexibility and actin surface interactions caused by
mutations. Principles of statistical mechanics will be used to embed these changes within a model of the
macromolecular actin filament complex. This scale-crossing technique will enable prediction of how mutations
affect filament behavior in vitro. Companion experiments will test the model predictions. For Aim 2, the actin
filament model will be placed within a representation of the cardiac sarcomere in order to predict dynamic
muscle twitch responses for each mutant. These responses will be checked for accuracy by viral expression of
mutant tropomyosins in human-derived engineered heart tissues. Aim 3 will use the models developed in Aims
1 & 2 to predict hypertrophic pathogenicity for 20 TPM1 variants identified in patients but never validated
experimentally. Predictions will be checked by placing some of the analyzed variants into engineered heart
tissues and measuring their hypertrophic responses. Feasibility of these aims is high because our team has
the unique expertise required to relate the structural properties of mutant tropomyosins to their physiological
behavior. In demonstrating a successful genotype-phenotype modeling approach, our work will pave the way
for mechanistic investigation of many other cardiovascular disorders with genetic origins.
项目总结/摘要
通过计算-实验混合方法揭示突变型TPM 1的致病机制
该提案的目标是开发和验证多尺度计算方法,
肌肉行为的基因组成。单基因突变已被确定为病因
由于基因组测序的出现,
技术.遗传信息有能力在许多方面改变临床实践,但其潜力
仍然没有实现,因为在将突变与可观察到的
疾病状态。我们的目标是通过使用
新的多尺度模型,可以预测分子尺度的现象,并将其投射到
生理相关性由于跨学科的合作,我们准备朝着这一目标取得关键进展。
该团队包括多尺度建模、结构生物学、生物物理学、肌肉力学和干细胞方面的专家
细胞生物学我们将重点关注原肌球蛋白(TPM 1),一种调节心肌收缩的蛋白质,
一旦发生突变,就会导致一种名为肥厚型心肌病(HCM)的危及生命的疾病。在
在细胞水平,HCM涉及由于肌肉蛋白表达增加引起的异常细胞生长,但
原肌球蛋白突变究竟如何触发这种过表达尚不清楚。为了证明
这种类型的基因型-表型差距可以通过多尺度建模来弥合,我们将跟踪五种影响
跨分子、亚细胞和细胞尺度的原肌球蛋白突变。在目标1中,我们将执行分子
动力学模拟预测原肌球蛋白的灵活性和肌动蛋白表面相互作用的变化引起的
突变。统计力学的原理将被用来嵌入这些变化的模型,
大分子肌动蛋白丝复合物。这种尺度交叉技术将能够预测突变如何
影响体外细丝行为。伴随实验将测试模型的预测。对于目标2,
细丝模型将被放置在心脏肌节的代表内,以预测动态
每种突变体的肌肉抽搐反应将通过以下病毒表达检查这些应答的准确性:
人源性工程心脏组织中的突变原肌球蛋白。Aim 3将使用Aims开发的模型
1和2预测在患者中鉴定但从未验证的20种TPM 1变体的肥大致病性
实验性的将通过将一些分析的变体放入工程心脏中来检查预测
组织并测量它们的肥大反应。这些目标的可行性很高,因为我们的团队
将突变原肌球蛋白的结构特性与其生理特性联系起来所需的独特专业知识,
行为在展示成功的基因型-表型建模方法时,我们的工作将为
用于许多其他具有遗传起源的心血管疾病的机制研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
STUART G CAMPBELL其他文献
STUART G CAMPBELL的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('STUART G CAMPBELL', 18)}}的其他基金
Establishing and reversing the functional consequences of Titin truncation mutations
建立并逆转肌联蛋白截断突变的功能后果
- 批准号:
10510011 - 财政年份:2022
- 资助金额:
$ 54.83万 - 项目类别:
Establishing and reversing the functional consequences of Titin truncation mutations
建立并逆转肌联蛋白截断突变的功能后果
- 批准号:
10640157 - 财政年份:2022
- 资助金额:
$ 54.83万 - 项目类别:
Computer modeling of myosin binding protein C and its effects on cardiac contraction
肌球蛋白结合蛋白 C 的计算机建模及其对心脏收缩的影响
- 批准号:
10371076 - 财政年份:2019
- 资助金额:
$ 54.83万 - 项目类别:
Computer modeling of myosin binding protein C and its effects on cardiac contraction
肌球蛋白结合蛋白 C 的计算机建模及其对心脏收缩的影响
- 批准号:
9903433 - 财政年份:2019
- 资助金额:
$ 54.83万 - 项目类别:
Revealing Pathomechanisms of Mutant TPM1 Through a Hybrid Computational-Experimental Approach
通过混合计算-实验方法揭示突变 TPM1 的病理机制
- 批准号:
10358783 - 财政年份:2017
- 资助金额:
$ 54.83万 - 项目类别:
Revealing Pathomechanisms of Mutant TPM1 Through a Hybrid Computational-Experimental Approach
通过混合计算-实验方法揭示突变 TPM1 的病理机制
- 批准号:
9398261 - 财政年份:2017
- 资助金额:
$ 54.83万 - 项目类别:
Revealing Pathomechanisms of Mutant TPM1 Through a Hybrid Computational-Experimental Approach
通过混合计算-实验方法揭示突变 TPM1 的病理机制
- 批准号:
10221767 - 财政年份:2017
- 资助金额:
$ 54.83万 - 项目类别:
Computational Pipeline for Identification of Disease-Causing Variants in Genes of the Cardiac Sarcomere
用于鉴定心脏肌节基因致病变异的计算流程
- 批准号:
10736459 - 财政年份:2017
- 资助金额:
$ 54.83万 - 项目类别:
Engineered Tissue for Biomechanical Phenotyping of Cardiomyopathy Patients
用于心肌病患者生物力学表型分析的工程组织
- 批准号:
8974854 - 财政年份:2014
- 资助金额:
$ 54.83万 - 项目类别:
相似海外基金
A novel motility system driven by two classes of bacterial actins MreB
由两类细菌肌动蛋白 MreB 驱动的新型运动系统
- 批准号:
22KJ2613 - 财政年份:2023
- 资助金额:
$ 54.83万 - 项目类别:
Grant-in-Aid for JSPS Fellows
The structural basis of plasmid segregation by bacterial actins
细菌肌动蛋白分离质粒的结构基础
- 批准号:
342887 - 财政年份:2016
- 资助金额:
$ 54.83万 - 项目类别:
Operating Grants
The structural basis for plasmid segregation by bacterial actins
细菌肌动蛋白分离质粒的结构基础
- 批准号:
278338 - 财政年份:2013
- 资助金额:
$ 54.83万 - 项目类别:
Operating Grants
Cytoplasmic Actins in Maintenance of Muscle Mitochondria
细胞质肌动蛋白在维持肌肉线粒体中的作用
- 批准号:
8505938 - 财政年份:2012
- 资助金额:
$ 54.83万 - 项目类别:
Differential Expression of the Diverse Plant Actins
多种植物肌动蛋白的差异表达
- 批准号:
7931495 - 财政年份:2009
- 资助金额:
$ 54.83万 - 项目类别:
Studies on how actins and microtubules are coordinated and its relevancy.
研究肌动蛋白和微管如何协调及其相关性。
- 批准号:
19390048 - 财政年份:2007
- 资助金额:
$ 54.83万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Interaction of myosin with monomeric actins
肌球蛋白与单体肌动蛋白的相互作用
- 批准号:
5311554 - 财政年份:2001
- 资助金额:
$ 54.83万 - 项目类别:
Priority Programmes
STRUCTURE/INTERACTIONS OF ACTINS AND ACTIN-BINDING PROTEIN
肌动蛋白和肌动蛋白结合蛋白的结构/相互作用
- 批准号:
6316669 - 财政年份:2000
- 资助金额:
$ 54.83万 - 项目类别: