Computer Assisted Identification and Volumetric Analysis of Enhancing Components
增强成分的计算机辅助识别和体积分析
基本信息
- 批准号:7661263
- 负责人:
- 金额:$ 15.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-05-01 至 2011-04-30
- 项目状态:已结题
- 来源:
- 关键词:ArchivesAreaBrainBrain NeoplasmsBrain imagingClinicalClinical TrialsClinical Trials Cooperative GroupComputer AssistedComputer Vision SystemsComputersDecision MakingDevelopmentDiagnosisDiagnosticDimensionsDiseaseDouble-Blind MethodEvaluationExploratory/Developmental GrantGadolinium DTPAGoalsGoldGrowthHumanImageImage AnalysisKnowledgeLabelLeadLearningMagnetic Resonance ImagingManualsMeasurementMeasuresMedical ImagingMethodologyMethodsMonitorNeoplasmsNeuraxisOutcomePatientsPerformancePharmaceutical PreparationsPhysiciansPilot ProjectsPostdoctoral FellowRandomizedReportingReproducibilityResearchResearch Project GrantsResolutionRetrospective StudiesRiskScanningScientistServicesSliceSolidStructureSystemTechniquesTechnologyTestingTimeTissuesTrainingTreatment ProtocolsTumor Volumebasechemotherapeutic agentcostdesignexperiencefollow-upimprovedindexingknowledge basemethod developmentneoplasticnovelpatient populationpublic health relevanceradiologistresponsestatisticstooltreatment planningtumor
项目摘要
DESCRIPTION (provided by applicant): The assessment of volumetric change of enhancing tissue is regarded as an important parameter used by clinicians when seeking to monitor the response of brain neoplasms to therapy. Unfortunately, direct computation of enhancing volume requires the manual tracing and segmentation of areas of enhancement typically extending over multiple images, which is time consuming, labor intensive, and therefore impractical. Substitute methods are widely utilized (such as bi-directional measurements). Such surrogate measurements for tumor volume become problematic. Our long-term goal is to seek an objective, computer aided diagnostic (CAD) methodology for automatic computation of tumor (enhancing tissue) volume relevant for clinical decision making. Our hypothesis behind this project is that volume of enhancing tissue can be accurately measured through the use of advanced computer vision techniques, which will lead to an effective CAD system able to assist radiologists analyzing MR brain images.
The specific aims of the proposed project are 1) to improve the accuracy of the measurement of enhancing tissue by constructing high resolution 3D MR images and labeling enhancing tissue using learning based computer vision techniques, and 2) to develop a CAD system for enhancing tissue volume assessment using the designed techniques and evaluate the performance of the system on assisting radiologists for image interpretation.
We believe this system will be well suited for use in patients undergoing treatment protocols/clinical trials who require short term serial imaging. It will better enable radiologists to give accurate quantitative clinical information. If the proposed research is completed successfully, the determination of enhancing tissue volume will be significantly advanced. It will enable the radiologists to rapidly provide objective, accurate, reproducible, and easily reported assessment of the tumor status. This will lead to a more rapid and reproducible assessment of neoplasm and therefore, hopefully influence patient outcomes in a positive way. The proposed research will also be applicable for usage on archived studies thereby enabling the volume of enhancing tissue to be calculated on these images as well.
PUBLIC HEALTH RELEVANCE: The goal of this research is to develop a more accurate and reproducible way to measure the amount of disease present in patients suffering from brain tumors. Measurement methods currently being used are limited in accuracy, reproducibility and efficiency and hence we propose a method, if successful, will enable the computer to identify and measure brain tumors in a more automated fashion with improved accuracy. Improvements in tumor volume assessment are important for treatment planning as well as for assessing response during clinical drug trials.
描述(由申请人提供):临床医生在监测脑肿瘤对治疗的反应时,将增强组织体积变化的评估视为一个重要参数。不幸的是,增强体积的直接计算需要手动跟踪和分割通常在多个图像上延伸的增强区域,这是耗时的、劳动密集的,因此是不切实际的。替代方法被广泛使用(如双向测量)。肿瘤体积的这种替代测量变得有问题。我们的长期目标是寻求一种客观的计算机辅助诊断(CAD)方法,用于自动计算与临床决策相关的肿瘤(增强组织)体积。我们的假设是,通过使用先进的计算机视觉技术,可以准确地测量增强组织的体积,这将导致一个有效的CAD系统,能够帮助放射科医生分析MR脑图像。
拟议项目的具体目标是:1)通过构建高分辨率3D MR图像并使用基于学习的计算机视觉技术标记增强组织来提高增强组织测量的准确性,以及2)使用设计的技术开发用于增强组织体积评估的CAD系统,并评估该系统在辅助放射科医生进行图像解释方面的性能。
我们相信该系统将非常适合用于需要短期连续成像的接受治疗方案/临床试验的患者。它将更好地使放射科医生提供准确的定量临床信息。如果拟议的研究成功完成,将大大推进增强组织体积的确定。它将使放射科医生能够快速提供客观,准确,可重复和易于报告的肿瘤状态评估。这将导致更快速和可重复的肿瘤评估,因此,希望以积极的方式影响患者的结果。拟议的研究也将适用于存档研究,从而使增强组织的体积也可以在这些图像上计算。
公共卫生关系:这项研究的目标是开发一种更准确和可重复的方法来测量患有脑肿瘤的患者中存在的疾病数量。目前使用的测量方法在准确性,可重复性和效率方面受到限制,因此我们提出了一种方法,如果成功,将使计算机能够以更自动化的方式识别和测量脑肿瘤,并提高准确性。肿瘤体积评估的改进对于治疗计划以及临床药物试验期间的反应评估是重要的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mubarak Ali Shah其他文献
Mubarak Ali Shah的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mubarak Ali Shah', 18)}}的其他基金
Computer Assisted Identification and Volumetric Analysis of Enhancing Components
增强成分的计算机辅助识别和体积分析
- 批准号:
7816795 - 财政年份:2009
- 资助金额:
$ 15.99万 - 项目类别:
相似国自然基金
层出镰刀菌氮代谢调控因子AreA 介导伏马菌素 FB1 生物合成的作用机理
- 批准号:2021JJ40433
- 批准年份:2021
- 资助金额:0.0 万元
- 项目类别:省市级项目
寄主诱导梢腐病菌AreA和CYP51基因沉默增强甘蔗抗病性机制解析
- 批准号:32001603
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
AREA国际经济模型的移植.改进和应用
- 批准号:18870435
- 批准年份:1988
- 资助金额:2.0 万元
- 项目类别:面上项目
相似海外基金
REQUEST TO ISSUE TASK ORDER 1 - TASK AREA 1: MANUAL OF OPERATIONS - FOR THE BRAIN INITIATIVE CELL ATLAS NETWORK (BICAN) SEQUENCING CORE CONTRACTS RFP 75N95022R00031 WITH THE UNIVERSITY OF WASHINGTON
请求发布任务令 1 - 任务领域 1:操作手册 - 大脑倡议细胞阿特拉斯网络 (BICAN) 与华盛顿大学的测序核心合同 RFP 75N95022R00031
- 批准号:
10931180 - 财政年份:2023
- 资助金额:
$ 15.99万 - 项目类别:
Development of an LED Device for Observing and Manipulating Neural Activity to Elucidate the Wide-Area Brain System
开发用于观察和操纵神经活动的 LED 设备,以阐明广域大脑系统
- 批准号:
23H01465 - 财政年份:2023
- 资助金额:
$ 15.99万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
REQUEST TO ISSUE TASK ORDER 1 - TASK AREA 1: MANUAL OF OPERATIONS - FOR THE BRAIN INITIATIVE CELL ATLAS NETWORK (BICAN) SEQUENCING CORE CONTRACTS WITH THE BROAD INSTITUTE
请求发布任务令 1 - 任务领域 1:操作手册 - 大脑计划细胞阿特拉斯网络 (BICAN) 与布罗德研究所签订测序核心合同
- 批准号:
10931182 - 财政年份:2023
- 资助金额:
$ 15.99万 - 项目类别:
REREQUEST TO ISSUE TASK ORDER 1 - TASK AREA 1: MANUAL OF OPERATIONS - FOR THE BRAIN INITIATIVE CELL ATLAS NETWORK (BICAN) SEQUENCING CORE CONTRACTS RFP 75N95022R00031 WITH THE NY GENOME CENTER
请求发布任务令 1 - 任务领域 1:操作手册 - 大脑倡议细胞阿特拉斯网络 (BICAN) 与纽约基因组中心的测序核心合同 RFP 75N95022R00031
- 批准号:
10931190 - 财政年份:2023
- 资助金额:
$ 15.99万 - 项目类别:
Dissecting an asymmetric brain area implicated in sleep maintenance
剖析与睡眠维持有关的不对称大脑区域
- 批准号:
BB/X01536X/1 - 财政年份:2023
- 资助金额:
$ 15.99万 - 项目类别:
Research Grant
Elucidation of relationship between three-dimensional transition of neglected space and area of brain damage in hemi-spatial neglect after stroke
脑卒中后半侧空间忽视被忽视空间三维转变与脑损伤面积关系的阐明
- 批准号:
22K21219 - 财政年份:2022
- 资助金额:
$ 15.99万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
CAREER: Untangling Inter-Area Communication in the Brain Using Multi-Region Neural Networks
职业:使用多区域神经网络理清大脑中的区域间通信
- 批准号:
2046583 - 财政年份:2021
- 资助金额:
$ 15.99万 - 项目类别:
Continuing Grant
A robotic fiber platform for large area deep brain interfacing
用于大面积深部脑接口的机器人纤维平台
- 批准号:
10294007 - 财政年份:2021
- 资助金额:
$ 15.99万 - 项目类别:
A robotic fiber platform for large area deep brain interfacing
用于大面积深部脑接口的机器人纤维平台
- 批准号:
10463747 - 财政年份:2021
- 资助金额:
$ 15.99万 - 项目类别:
Decoding / encoding somatosensation from the hand area of the human primary somatosensory (S1) cortex for a closed-loop motor / sensory brain-machine interface (BMI)
解码/编码人类初级体感 (S1) 皮层手部区域的体感,用于闭环运动/感觉脑机接口 (BMI)
- 批准号:
10656218 - 财政年份:2020
- 资助金额:
$ 15.99万 - 项目类别:














{{item.name}}会员




