CAREER: Untangling Inter-Area Communication in the Brain Using Multi-Region Neural Networks
职业:使用多区域神经网络理清大脑中的区域间通信
基本信息
- 批准号:2046583
- 负责人:
- 金额:$ 54.93万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-01 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Human and animal behaviors like learning, remembering, and deciding require the interactions of neurons and circuits across regions of the brain. However, despite the importance of these interactions, remarkably little is known about the processes regulating these brain-wide communications. This research builds computer models of the brain based on measurements taken from humans and animals performing behaviors, and uses those models to identify how different brain regions communicate and work together to produce behaviors. This work will identify shared and distinct features of brain-wide communication to guide new experimental studies and enable new computer models to better define brain functions. Additionally, this project promotes community engagement, diversity, and inclusion through two complementary programs: "Comp-ic Book Neuroscience," which brings research findings from computational neuroscience into under-served classrooms in New York City through the jargon-free and visually appealing medium of comics; and the Student Outreach for Neuroscience Integrated with CS (SONiC) program, an annual lab-based summer school to give NYC-area senior college and graduate students hands-on experience with visualizing and modeling brain data.While rapid advances in neuroscience have catalyzed a deeper understanding of individual brain regions and their functions, these regions generally do not operate in isolation. Yet, little is known about processes regulating the brain-wide communication underlying many behavioral outputs. To reveal fundamental principles of brain-wide communication, this project will produce (1) a new, scalable, robust, and flexible class of multi-region recurrent-neural network (RNN) models with inter-area communication; and (2) analysis methods to infer the direction and magnitude of interactions within and between areas. Multi-region RNNs will be constrained with real neural data to uncover mechanisms of the real biological system, for instance, how the cooperative activity of neurons within and across brain regions gives rise to complex behaviors like decision-making. Reverse-engineering these models will reveal how multi-area brain circuits use biological plasticity to acquire a new skill. Finally, RNN modeling of human electrophysiology data will help identify inter-area communication processes that are conserved or divergent across multiple species. Wider adoption of the new models and tools will transform the understanding of how interacting brain areas function cohesively to orchestrate complex behaviors and inform future experimental paradigms. The research will also promote cross-fertilization between neuroscience and artificial intelligence/machine learning communities, and provide quantitative techniques shared in the broader neuroscience community. Furthermore, the project will foster an inclusive, welcoming environment for a diverse new generation of computational neuroscientists.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
人类和动物的行为,如学习、记忆和决策,需要大脑各区域的神经元和回路的相互作用。然而,尽管这些相互作用很重要,但人们对调节这些全脑通信的过程知之甚少。这项研究基于对人类和动物行为的测量建立了大脑的计算机模型,并使用这些模型来识别不同的大脑区域如何交流和共同工作以产生行为。这项工作将识别全脑通信的共同和独特特征,以指导新的实验研究,并使新的计算机模型能够更好地定义大脑功能。此外,该项目通过两个互补方案促进社区参与、多样性和包容性:“计算机神经科学”,通过无行话和视觉吸引力的漫画媒介,将计算神经科学的研究成果带入纽约市服务不足的教室;和学生外展神经科学与CS集成(SONiC)计划,一年一度的实验室暑期学校,让纽约地区的高年级大学生和研究生的手-虽然神经科学的快速发展促进了对个体大脑的更深入理解,区域及其职能,这些区域一般不是孤立运作的。然而,人们对调节许多行为输出背后的全脑通信的过程知之甚少。为了揭示全脑通信的基本原理,该项目将产生(1)一种新的,可扩展的,鲁棒的,灵活的多区域递归神经网络(RNN)模型,具有区域间通信;和(2)分析方法,以推断区域内和区域间相互作用的方向和幅度。多区域RNN将受到真实的神经数据的约束,以揭示真实的生物系统的机制,例如,大脑区域内和跨大脑区域的神经元的合作活动如何产生决策等复杂行为。对这些模型进行逆向工程将揭示多区域大脑回路如何利用生物可塑性来获得新技能。最后,人类电生理数据的RNN建模将有助于识别跨多个物种保守或发散的区域间通信过程。新模型和工具的广泛采用将改变对相互作用的大脑区域如何协调复杂行为的理解,并为未来的实验范式提供信息。该研究还将促进神经科学和人工智能/机器学习社区之间的交叉,并提供在更广泛的神经科学社区中共享的定量技术。此外,该项目将为新一代的计算神经科学家创造一个包容、友好的环境。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Curriculum learning as a tool to uncover learning principles in the brain
课程学习作为揭示大脑学习原理的工具
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Kepple, D.;Engelken, R.;Rajan, K
- 通讯作者:Rajan, K
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kanaka Rajan其他文献
Temporally specific patterns of neural activity in interconnected corticolimbic structures during reward anticipation
奖励预期过程中相互关联的皮质边缘结构中神经活动的时间特定模式
- DOI:
10.1101/2020.12.17.423162 - 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
M. E. Young;Camille A. Spencer;Clayton P. Mosher;Sarita Tamang;Kanaka Rajan;P. Rudebeck - 通讯作者:
P. Rudebeck
Nominally non-responsive frontal and sensory cortical cells encode task-relevant variables via ensemble consensus-building
名义上无反应的额叶和感觉皮层细胞通过整体共识构建来编码与任务相关的变量
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Michele N. Insanally;Ioana Carcea;Rachel E. Field;Chris C. Rodgers;Brian DePasquale;Kanaka Rajan;M. DeWeese;B. Albanna;R. Froemke - 通讯作者:
R. Froemke
Inferring brain-wide interactions using data-constrained recurrent neural network models
使用数据约束的循环神经网络模型推断全脑交互
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
M. Perich;Charlotte Arlt;Sofia Soares;M. E. Young;Clayton P. Mosher;Juri Minxha;Eugene Carter;Ueli Rutishauser;P. Rudebeck;C. Harvey;Kanaka Rajan - 通讯作者:
Kanaka Rajan
A ‘programming’ framework for recurrent neural networks
用于循环神经网络的“编程”框架
- DOI:
10.1038/s42256-023-00674-w - 发表时间:
2023-06-12 - 期刊:
- 影响因子:23.900
- 作者:
Manuel Beiran;Camille A. Spencer-Salmon;Kanaka Rajan - 通讯作者:
Kanaka Rajan
Rethinking brain-wide interactions through multi-region ‘network of networks’ models
通过多区域“网络的网络”模型重新思考全脑交互
- DOI:
10.31219/osf.io/58qwj - 发表时间:
2020 - 期刊:
- 影响因子:5.7
- 作者:
M. Perich;Kanaka Rajan - 通讯作者:
Kanaka Rajan
Kanaka Rajan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kanaka Rajan', 18)}}的其他基金
NCS-FO: State Representations in Multi-purpose and Multi-region Neural Network Models of Cognition
NCS-FO:多用途和多区域认知神经网络模型中的状态表示
- 批准号:
1926800 - 财政年份:2019
- 资助金额:
$ 54.93万 - 项目类别:
Standard Grant
相似海外基金
Untangling environmental effects on bee health in the face of Varroa
面对瓦螨,解开环境对蜜蜂健康的影响
- 批准号:
FT230100478 - 财政年份:2023
- 资助金额:
$ 54.93万 - 项目类别:
ARC Future Fellowships
Untangling Photoreactivity of Oxide Nanoparticles
解开氧化物纳米粒子的光反应性
- 批准号:
2310205 - 财政年份:2023
- 资助金额:
$ 54.93万 - 项目类别:
Standard Grant
Untangling the matrix of bacterial biofilms
解开细菌生物膜的基质
- 批准号:
DP230101930 - 财政年份:2023
- 资助金额:
$ 54.93万 - 项目类别:
Discovery Projects
Criticality of Urban Networks: Untangling the Complexity of Urban Congestion
城市网络的重要性:解决城市拥堵的复杂性
- 批准号:
2311159 - 财政年份:2023
- 资助金额:
$ 54.93万 - 项目类别:
Standard Grant
PurSUiT: Untangling a clade of inter-dependent apicomplexans and their bacterial endosymbionts.
追求:解开相互依赖的顶端复合体及其细菌内共生体的进化枝。
- 批准号:
2231583 - 财政年份:2023
- 资助金额:
$ 54.93万 - 项目类别:
Continuing Grant
CAREER: Untangling Chaotic Electromagnetic Transient Phenomena in Power Systems Mixed with Volatile Inverter-Based Renewable Energy Resources
职业:解开与不稳定的基于逆变器的可再生能源混合的电力系统中的混沌电磁瞬态现象
- 批准号:
2237527 - 财政年份:2023
- 资助金额:
$ 54.93万 - 项目类别:
Continuing Grant
Untangling the mechanisms of white matter damage in cerebral hypoperfusion
解开脑灌注不足导致白质损伤的机制
- 批准号:
MR/X010678/1 - 财政年份:2023
- 资助金额:
$ 54.93万 - 项目类别:
Research Grant
AGS-FIRP Track 2: Untangling the physics of aerosol activation, turbulence, and drizzle formation: Pi Chamber experiments and numerical simulation
AGS-FIRP 轨道 2:理清气溶胶活化、湍流和毛毛雨形成的物理原理:Pi 室实验和数值模拟
- 批准号:
2227012 - 财政年份:2022
- 资助金额:
$ 54.93万 - 项目类别:
Standard Grant
NSF Postdoctoral Fellowship in Biology FY 2021: Untangling the roles of genetic and regulatory mechanisms in adaptive evolutionary responses to climate change
2021 财年 NSF 生物学博士后奖学金:阐明遗传和调控机制在气候变化适应性进化反应中的作用
- 批准号:
2109544 - 财政年份:2022
- 资助金额:
$ 54.93万 - 项目类别:
Fellowship Award
Collaborative Research: Untangling the Changing Nature of El Niño-Southern Oscillation (ENSO)-Driven Terrestrial Impacts
合作研究:解开厄尔尼诺南方涛动 (ENSO) 驱动的陆地影响的性质变化
- 批准号:
2223263 - 财政年份:2022
- 资助金额:
$ 54.93万 - 项目类别:
Standard Grant