Cytosolic-Vesicle-Vacuolar Protein Degradation Pathway

胞浆-囊泡-液泡蛋白降解途径

基本信息

项目摘要

DESCRIPTION (provided by applicant): Protein degradation is critical for cell cycle division, cell growth control, transcriptional regulation and metabolic control. Autophagy is a process whereby lysosomes degrade cytosolic proteins and organelles when cells are starved of nutrients. Defects or changes in autophagy have been linked to cancer development, neuromuscular dystrophies and aging. Multiple forms of autophagy exist, and a unique autophagy pathway has been identified in our lab. The gluconeogenic enzyme fructose-1,6-bisphosphatase (FBPase) is degraded when yeast cells are shifted from poor carbon sources to fresh glucose, and this degradation prevents energy futile cycles that are harmful to cells. FBPase can be degraded either in the proteasome or in the vacuole depending on the duration of starvation. For the vacuolar pathway, FBPase is first targeted to Vid vesicles and then to the vacuole. A number of VID genes function in both degradation pathways and they are evolutionary conserved. The Vid pathway is utilized for multiple cargo proteins including isocitrate lysase, phosphoenopyruvate carboxykinase and malate dehydrogenase. Our long-term goal is to understand the mechanisms underlying the vacuolar dependent pathway of FBPase degradation. The objective of this application is to understand why FBPase switches degradation from the proteasome to the vacuole. Our central hypothesis is that the switch is controlled by multiple protein complexes that can be activated or inactivated depending upon the duration of starvation. We plan to test this hypothesis by pursuing the following aims. 1. We will study why the Vid vesicle trafficking pathway is inactive in short termed starved cells. Is this because of an inactive cAMP signaling pathway, the absence of Vid vesicles, or incompetent Vid vesicles? 2. FBPase physically interacts with components of the Tori complex (TORC1). We will study how Tori regulates the vacuolar pathway. 3. Vid28p and VidSOp form a stable complex. We will study how this complex regulates both degradation pathways. The completion of the proposed experiments will enhance our understanding regarding how these two major proteolytic pathways are regulated. This may provide therapeutic advantages to eliminate abnormal proteins that accumulate in Parkinson's disease, Huntington's disease or other pathological conditions.
描述(由申请方提供):蛋白质降解对于细胞周期分裂、细胞生长控制、转录调控和代谢控制至关重要。自噬是当细胞缺乏营养时,溶酶体降解细胞溶质蛋白和细胞器的过程。自噬的缺陷或变化与癌症发展、神经肌肉营养不良和衰老有关。存在多种形式的自噬,并且在我们的实验室中已经确定了一种独特的自噬途径。当酵母细胞从贫碳源转移到新鲜葡萄糖时,产酶果糖-1,6-二磷酸酶(FBPase)会降解,这种降解可以防止对细胞有害的能量无效循环。FBPase可以在蛋白酶体或液泡中降解,这取决于饥饿的持续时间。对于液泡途径,FBPase首先靶向Vid囊泡,然后靶向液泡。许多VID基因在两种降解途径中起作用,并且它们是进化保守的。Vid途径用于多种货物蛋白,包括异柠檬酸裂解酶、磷酸烯醇丙酮酸羧激酶和苹果酸脱氢酶。我们的长期目标是了解FBPase降解的液泡依赖性途径的机制。本申请的目的是了解为什么FBPase将降解从蛋白酶体转换到液泡。我们的中心假设是,开关是由多个蛋白质复合物控制的,这些蛋白质复合物可以根据饥饿的持续时间被激活或灭活。我们计划通过追求以下目标来检验这一假设。1.我们将研究为什么Vid囊泡运输途径在短期饥饿的细胞中是无活性的。这是因为一个不活跃的cAMP信号通路,缺乏Vid囊泡,或不称职的Vid囊泡?2. FBPase与Tori复合物(TORC 1)的组分发生物理相互作用。我们将研究Tori如何调节液泡通路。3. Vid 28 p和VidSOp形成稳定的复合物。我们将研究这种复合物如何调节这两种降解途径。完成拟议的实验将提高我们对这两个主要的蛋白水解途径是如何调节的理解。这可以提供消除在帕金森病、亨廷顿病或其他病理状况中积累的异常蛋白质的治疗优势。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

HUI-LING CHIANG其他文献

HUI-LING CHIANG的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('HUI-LING CHIANG', 18)}}的其他基金

CYTOSL-VESICLE-VACUOLE PROTEIN DEGRADATION PATHWAY
细胞质-囊泡-液泡蛋白降解途径
  • 批准号:
    8171461
  • 财政年份:
    2010
  • 资助金额:
    $ 30.64万
  • 项目类别:
CYTOSOL/VESICLE/VACUOLAR PROTEIN DEGRADATION PATHWAY
细胞溶胶/囊泡/液泡蛋白降解途径
  • 批准号:
    6181488
  • 财政年份:
    1998
  • 资助金额:
    $ 30.64万
  • 项目类别:
CYTOSOLIC-VESICLE-VACUOLAR PROTEIN DEGRADATION PATHWAY
细胞质-囊泡-液泡蛋白降解途径
  • 批准号:
    6652015
  • 财政年份:
    1998
  • 资助金额:
    $ 30.64万
  • 项目类别:
Cytosolic-Vesicle-Vacuolar Protein Degradation Pathway
胞浆-囊泡-液泡蛋白降解途径
  • 批准号:
    7259781
  • 财政年份:
    1998
  • 资助金额:
    $ 30.64万
  • 项目类别:
CYTOSOL/VESICLE/VACUOLAR PROTEIN DEGRADATION PATHWAY
细胞溶胶/囊泡/液泡蛋白降解途径
  • 批准号:
    6019529
  • 财政年份:
    1998
  • 资助金额:
    $ 30.64万
  • 项目类别:
CYTOSOLIC-VESICLE-VACUOLAR PROTEIN DEGRADATION PATHWAY
细胞质-囊泡-液泡蛋白降解途径
  • 批准号:
    6795603
  • 财政年份:
    1998
  • 资助金额:
    $ 30.64万
  • 项目类别:
CYTOSOL/VESICLE/VACUOLAR PROTEIN DEGRADATION PATHWAY
细胞溶胶/囊泡/液泡蛋白降解途径
  • 批准号:
    6386503
  • 财政年份:
    1998
  • 资助金额:
    $ 30.64万
  • 项目类别:
Cytosolic-Vesicle-Vacuolar Protein Degradation Pathway
胞浆-囊泡-液泡蛋白降解途径
  • 批准号:
    7904166
  • 财政年份:
    1998
  • 资助金额:
    $ 30.64万
  • 项目类别:
CYTOSOLIC-VESICLE-VACUOLAR PROTEIN DEGRADATION PATHWAY
细胞质-囊泡-液泡蛋白降解途径
  • 批准号:
    6945167
  • 财政年份:
    1998
  • 资助金额:
    $ 30.64万
  • 项目类别:
CYTOSOLIC-VESICLE-VACUOLAR PROTEIN DEGRADATION PATHWAY
细胞质-囊泡-液泡蛋白降解途径
  • 批准号:
    7256166
  • 财政年份:
    1998
  • 资助金额:
    $ 30.64万
  • 项目类别:

相似海外基金

Interplay between Aging and Tubulin Posttranslational Modifications
衰老与微管蛋白翻译后修饰之间的相互作用
  • 批准号:
    24K18114
  • 财政年份:
    2024
  • 资助金额:
    $ 30.64万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
EMNANDI: Advanced Characterisation and Aging of Compostable Bioplastics for Automotive Applications
EMNANDI:汽车应用可堆肥生物塑料的高级表征和老化
  • 批准号:
    10089306
  • 财政年份:
    2024
  • 资助金额:
    $ 30.64万
  • 项目类别:
    Collaborative R&D
The Canadian Brain Health and Cognitive Impairment in Aging Knowledge Mobilization Hub: Sharing Stories of Research
加拿大大脑健康和老龄化认知障碍知识动员中心:分享研究故事
  • 批准号:
    498288
  • 财政年份:
    2024
  • 资助金额:
    $ 30.64万
  • 项目类别:
    Operating Grants
関節リウマチ患者のSuccessful Agingに向けたフレイル予防対策の構築
类风湿性关节炎患者成功老龄化的衰弱预防措施的建立
  • 批准号:
    23K20339
  • 财政年份:
    2024
  • 资助金额:
    $ 30.64万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Baycrest Academy for Research and Education Summer Program in Aging (SPA): Strengthening research competencies, cultivating empathy, building interprofessional networks and skills, and fostering innovation among the next generation of healthcare workers t
Baycrest Academy for Research and Education Summer Program in Aging (SPA):加强研究能力,培养同理心,建立跨专业网络和技能,并促进下一代医疗保健工作者的创新
  • 批准号:
    498310
  • 财政年份:
    2024
  • 资助金额:
    $ 30.64万
  • 项目类别:
    Operating Grants
Life course pathways in healthy aging and wellbeing
健康老龄化和福祉的生命历程路径
  • 批准号:
    2740736
  • 财政年份:
    2024
  • 资助金额:
    $ 30.64万
  • 项目类别:
    Studentship
I-Corps: Aging in Place with Artificial Intelligence-Powered Augmented Reality
I-Corps:利用人工智能驱动的增强现实实现原地老龄化
  • 批准号:
    2406592
  • 财政年份:
    2024
  • 资助金额:
    $ 30.64万
  • 项目类别:
    Standard Grant
NSF PRFB FY 2023: Connecting physiological and cellular aging to individual quality in a long-lived free-living mammal.
NSF PRFB 2023 财年:将生理和细胞衰老与长寿自由生活哺乳动物的个体质量联系起来。
  • 批准号:
    2305890
  • 财政年份:
    2024
  • 资助金额:
    $ 30.64万
  • 项目类别:
    Fellowship Award
虚弱高齢者のSuccessful Agingを支える地域課題分析指標と手法の確立
建立区域问题分析指标和方法,支持体弱老年人成功老龄化
  • 批准号:
    23K20355
  • 财政年份:
    2024
  • 资助金额:
    $ 30.64万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
「ケア期間」に着目したbiological aging指標の開発
开发聚焦“护理期”的生物衰老指数
  • 批准号:
    23K24782
  • 财政年份:
    2024
  • 资助金额:
    $ 30.64万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了