Experimental and Computational Studies of Exit from Mitosis in Budding Yeast
出芽酵母有丝分裂退出的实验和计算研究
基本信息
- 批准号:7569962
- 负责人:
- 金额:$ 37.83万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-02-01 至 2011-01-31
- 项目状态:已结题
- 来源:
- 关键词:AccountingAddressAffectBiochemistryBiologicalCell CycleCell Cycle ProgressionCell Cycle RegulationCell Cycle StageCell SizeCell divisionCellsChromosomesComputing MethodologiesCongenital AbnormalityConsultCyclin ACyclin-Dependent KinasesCyclinsDNADNA damage checkpointDataDevelopmentDiseaseEmbryonic DevelopmentEquilibriumEukaryotaEukaryotic CellEventFamilyFission YeastFoundationsGene ExpressionGene ProteinsGenesGeneticGrowthGrowth FactorHealthHumanIndividualInheritedInstitutesLaboratoriesLifeMad1 proteinMalignant NeoplasmsMammalsMapsMeasuresMetaphaseMethodsMitosisMitoticMitotic spindleModelingMolecularMolecular GeneticsNewborn InfantNutritional statusOrganismPathway interactionsPatternPhasePhosphoric Monoester HydrolasesPhosphotransferasesPhysiologicalPlant RootsProcessPropertyProteinsRanaRelative (related person)ReproductionResearch PersonnelRoleSaccharomyces cerevisiaeSaccharomycetalesScienceSignal PathwaySignal TransductionSolidSystemTestingTheoretical StudiesTimeTranslatingUncertaintyUniversitiesVirginiaWound HealingYeast Model SystemYeastsbasecarcinogenesiscell growthcell typecomputer studiescostgenome sequencinggenome wide association studyimprovedmathematical modelmolecular oncologynovelprogramsprotein complexresearch studyresponsesimulationsuccesstheoriestissue regenerationtool
项目摘要
DESCRIPTION (provided by applicant): The cycle of cell growth, DMA synthesis, mitosis and cell division is the fundamental process by which cells (and all living organisms) grow, develop and reproduce. Hence, it is of crucial importance to science and human health to understand the molecular mechanisms that control these processes in eukaryotic cells. Molecular biologists have been extremely successful in identifying the major genes and proteins involved in this control system, especially in yeast cells where genetic tools are especially powerful. Indeed, the molecular details are so extensive and the regulatory network is so complicated that mathematical and computational methods are needed to reliably track the interactions of dozens of genes, mRNAs, proteins, and multi-protein complexes. Such a model of the cell cycle control system in budding yeast has proved to be both accurate and predictive. Nonetheless, as experimental characterization of cell-cycle control mechanisms continues to grow, the model must grow as well. In this proposal, a multi-disciplinary team of theoreticians and experimentalists from Virginia Tech, the Rockefeller University and the Institute for Molecular Oncology seeks a better understanding of the molecular controls over events at the end of the cell cycle, when replicated DMA molecules are partitioned to the two halves of a dividing cell so that each newly formed cell receives one and only one copy of each DNA molecule. If the dividing cell makes errors in this process, then newborn cells will inherit too many or too few DNA molecules, which is a root cause of some diseases-like cancer-and of some birth defects. The investigators will measure the molecular correlates of mitotic-exit events, and they will build detailed models of the signaling pathways that control these events (the mitotic-exit network, the 'FEAR1 pathway, the DNA-damage checkpoint, and the spindle assembly checkpoint). All models are built on a solid foundation of experimental observations, and they make clear and novel predictions about cell division under controlled conditions. Many of these predictions will be tested by the experimental collaborators. Because all eukaryotic cells seem to employ the same fundamental molecular machinery of cell cycle regulation, success in modeling mitotic exit in budding yeast will translate into better understanding of normal and aberrant cell division of relevance to human health: e.g., embryonic development, tissue regeneration, wound healing, and carcinogenesis.
描述(申请人提供):细胞生长、DNA合成、有丝分裂和细胞分裂的周期是细胞(和所有活着的生物体)生长、发育和繁殖的基本过程。因此,了解控制真核细胞这些过程的分子机制对科学和人类健康至关重要。分子生物学家已经非常成功地确定了这个控制系统中涉及的主要基因和蛋白质,特别是在遗传工具特别强大的酵母细胞中。事实上,分子细节是如此广泛,调控网络是如此复杂,以至于需要数学和计算方法来可靠地跟踪数十个基因、mRNA、蛋白质和多蛋白质复合体的相互作用。事实证明,芽殖酵母细胞周期控制系统的这种模型是准确的和可预测的。尽管如此,随着细胞周期控制机制的实验表征继续增长,该模型也必须增长。在这项提案中,一个由弗吉尼亚理工大学、洛克菲勒大学和分子肿瘤研究所的理论家和实验学家组成的多学科团队试图更好地理解分子对细胞周期末期事件的控制,即复制的DMA分子被分割成分裂细胞的两半,以便每个新形成的细胞收到每个DNA分子的一个且只有一个副本。如果分裂的细胞在这个过程中出错,那么新生的细胞将继承太多或太少的DNA分子,这是一些疾病--如癌症--和一些出生缺陷的根本原因。研究人员将测量有丝分裂退出事件的分子相关性,并建立控制这些事件的信号通路的详细模型(有丝分裂退出网络、FEAR1途径、DNA损伤检查点和纺锤体组装检查点)。所有模型都建立在坚实的实验观察基础上,它们对受控条件下的细胞分裂做出了明确而新颖的预测。这些预测中的许多将得到实验合作者的检验。由于所有真核细胞似乎都使用相同的细胞周期调控的基本分子机制,成功地模拟发芽酵母的有丝分裂退出将转化为更好地理解与人类健康相关的正常和异常细胞分裂:例如,胚胎发育、组织再生、伤口愈合和癌症发生。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
John J. Tyson其他文献
On the appearance of chaos in a model of the Belousov reaction
- DOI:
10.1007/bf00276106 - 发表时间:
1977-12-01 - 期刊:
- 影响因子:2.300
- 作者:
John J. Tyson - 通讯作者:
John J. Tyson
Sloppy size control of the cell division cycle.
细胞分裂周期的大小控制不严格。
- DOI:
10.1016/s0022-5193(86)80162-x - 发表时间:
1986 - 期刊:
- 影响因子:2
- 作者:
John J. Tyson;Odo Diekmann - 通讯作者:
Odo Diekmann
Turing-pattern model of scaffolding proteins that establish spatial asymmetry during the cell cycle of emCaulobacter crescentus/em
在新月柄杆菌(emCaulobacter crescentus)细胞周期中建立空间不对称性的支架蛋白图灵模式模型
- DOI:
10.1016/j.isci.2023.106513 - 发表时间:
2023-04-21 - 期刊:
- 影响因子:4.100
- 作者:
Chunrui Xu;John J. Tyson;Yang Cao - 通讯作者:
Yang Cao
Analysis of robustness of oscillations in models of the mammalian circadian clock
- DOI:
10.1016/j.bpj.2022.11.1554 - 发表时间:
2023-02-10 - 期刊:
- 影响因子:
- 作者:
Xiangyu Yao;Jing Chen;John J. Tyson;Benjamin Heidebrecht - 通讯作者:
Benjamin Heidebrecht
Periodic enzyme synthesis: reconsideration of the theory of oscillatory repression.
周期性酶合成:振荡抑制理论的重新思考。
- DOI:
- 发表时间:
1979 - 期刊:
- 影响因子:2
- 作者:
John J. Tyson - 通讯作者:
John J. Tyson
John J. Tyson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('John J. Tyson', 18)}}的其他基金
Experimental and Computational Studies of Exit from Mitosis in Budding Yeast
出芽酵母有丝分裂退出的实验和计算研究
- 批准号:
7176649 - 财政年份:2007
- 资助金额:
$ 37.83万 - 项目类别:
Experimental and Computational Studies of Exit from Mitosis in Budding Yeast
出芽酵母有丝分裂退出的实验和计算研究
- 批准号:
7339879 - 财政年份:2007
- 资助金额:
$ 37.83万 - 项目类别:
Experimental and Computational Studies of Exit from Mitosis in Budding Yeast
出芽酵母有丝分裂退出的实验和计算研究
- 批准号:
7760873 - 财政年份:2007
- 资助金额:
$ 37.83万 - 项目类别:
Stochastic Models of Cell Cycle Regulation in Eukaryotes
真核生物细胞周期调控的随机模型
- 批准号:
7436098 - 财政年份:2006
- 资助金额:
$ 37.83万 - 项目类别:
Stochastic Models of Cell Cycle Regulation in Eukaryotes
真核生物细胞周期调控的随机模型
- 批准号:
7161846 - 财政年份:2006
- 资助金额:
$ 37.83万 - 项目类别:
Stochastic Models of Cell Cycle Regulation in Eukaryotes
真核生物细胞周期调控的随机模型
- 批准号:
7289061 - 财政年份:2006
- 资助金额:
$ 37.83万 - 项目类别:
Stochastic Models of Cell Cycle Regulation in Eukaryotes
真核生物细胞周期调控的随机模型
- 批准号:
7983356 - 财政年份:2006
- 资助金额:
$ 37.83万 - 项目类别:
Stochastic Models of Cell Cycle Regulation in Eukaryotes
真核生物细胞周期调控的随机模型
- 批准号:
7675416 - 财政年份:2006
- 资助金额:
$ 37.83万 - 项目类别:
Stochastic Models of Cell Cycle Regulation in Eukaryotes
真核生物细胞周期调控的随机模型
- 批准号:
8137719 - 财政年份:2006
- 资助金额:
$ 37.83万 - 项目类别:
Stochastic Models of Cell Cycle Regulation in Eukaryotes
真核生物细胞周期调控的随机模型
- 批准号:
7241501 - 财政年份:2006
- 资助金额:
$ 37.83万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 37.83万 - 项目类别:
Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 37.83万 - 项目类别:
Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 37.83万 - 项目类别:
Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 37.83万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 37.83万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 37.83万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 37.83万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 37.83万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 37.83万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 37.83万 - 项目类别:
Research Grant