Stochastic Models of Cell Cycle Regulation in Eukaryotes

真核生物细胞周期调控的随机模型

基本信息

  • 批准号:
    7983356
  • 负责人:
  • 金额:
    $ 48.13万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2006
  • 资助国家:
    美国
  • 起止时间:
    2006-06-06 至 2014-08-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): The cycle of cell growth, DNA synthesis, mitosis and cell division is the fundamental process by which cells (and all living organisms) grow, develop and reproduce. Hence, it is of crucial importance to science and human health to understand the molecular mechanisms that control these processes in eukaryotic cells. The control system is so complex that mathematical and computational methods are needed to reliably track the interactions of all the relevant genes, mRNAs, proteins, and multiprotein complexes. Deterministic models (ordinary differential equations) are adequate for understanding the average behavior of groups of cells, but to understand the far-from-average behavior of individual cells requires stochastic models that accurately account for noise stemming from small numbers of participating molecules within a single cell and from vagaries of the division process (i.e., unequal partitioning of molecular components between daughter cells). Accurately modeling the variable responses among cells in a population may be critical to understanding abnormal and diseased cell proliferation. The goals of the proposed renewal are to 1) develop a realistic and accurate stochastic model of cell cycle control in budding yeast and to extend this model to the control of mammalian cell proliferation, 2) measure stochastic effects in single yeast cells in order to provide experimental constraints on and tests of the model, and 3) develop effective algorithms and software to support stochastic modeling and simulation, and to make these tools readily available to the scientific community. Our multi-disciplinary team at Virginia Tech has proven expertise in all aspects of the project and close collaborations with top researchers in the areas of stochastic simulation, sensitivity analysis, bifurcation theory, modeling software, and yeast genetics. Because all eukaryotic cells seem to employ the same fundamental molecular machinery that regulates the cell cycle of yeast, success in modeling growth and division of single yeast cells will translate into better understanding of the role of mammalian cell division in basic biological processes of significance to human health: e.g., embyronic development, tissue regeneration, wound healing, and carcinogenesis. PUBLIC HEALTH RELEVANCE: The cell division cycle is the fundamental process of biological growth and reproduction, and mistakes in this process underlie many serious health problems, especially cancer. An integrative understanding of the cellular basis of health and disease will require, among other things, a description of the cell cycle by computational models that account accurately for the reliability of DNA replication and inheritance despite the molecular fluctuations that inevitably occur in the small confines of a living cell. Hence, a validated stochastic model of the eukaryotic cell cycle is essential to progress in the field of molecular systems biology.
描述(由申请人提供):细胞生长、DNA合成、有丝分裂和细胞分裂的周期是细胞(和所有生物体)生长、发育和繁殖的基本过程。因此,了解真核细胞中控制这些过程的分子机制对科学和人类健康至关重要。控制系统是如此复杂,以至于需要数学和计算方法来可靠地跟踪所有相关基因、mRNA、蛋白质和多蛋白质复合物的相互作用。确定性模型(常微分方程)足以理解细胞组的平均行为,但是为了理解个体细胞的远离平均的行为,需要随机模型,该随机模型准确地解释源自单个细胞内的少量参与分子和分裂过程的变幻莫测(即,子细胞之间分子组分的不均等分配)。准确地模拟群体中细胞之间的可变响应对于理解异常和病变细胞增殖可能是至关重要的。所提出的更新的目标是:1)开发芽殖酵母中细胞周期控制的现实和准确的随机模型,并将该模型扩展到哺乳动物细胞增殖的控制,2)测量单个酵母细胞中的随机效应,以便提供对模型的实验约束和测试,以及3)开发有效的算法和软件来支持随机建模和模拟,并使科学界能够随时使用这些工具。我们在弗吉尼亚理工大学的多学科团队在该项目的各个方面都有专业知识,并与随机模拟,灵敏度分析,分叉理论,建模软件和酵母遗传学领域的顶级研究人员密切合作。由于所有真核细胞似乎都采用相同的调节酵母细胞周期的基本分子机制,因此成功模拟单个酵母细胞的生长和分裂将转化为更好地理解哺乳动物细胞分裂在对人类健康具有重要意义的基本生物过程中的作用:例如,胚胎发育、组织再生、伤口愈合和致癌作用。 公共卫生关系:细胞分裂周期是生物生长和繁殖的基本过程,这一过程中的错误导致了许多严重的健康问题,尤其是癌症。综合理解健康和疾病的细胞基础,除其他外,需要通过计算模型描述细胞周期,这些模型准确地解释了DNA复制和遗传的可靠性,尽管在活细胞的小范围内不可避免地发生分子波动。因此,一个有效的真核细胞周期的随机模型是必不可少的进展,在分子系统生物学领域。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

John J. Tyson其他文献

On the appearance of chaos in a model of the Belousov reaction
  • DOI:
    10.1007/bf00276106
  • 发表时间:
    1977-12-01
  • 期刊:
  • 影响因子:
    2.300
  • 作者:
    John J. Tyson
  • 通讯作者:
    John J. Tyson
Sloppy size control of the cell division cycle.
细胞分裂周期的大小控制不严格。
  • DOI:
    10.1016/s0022-5193(86)80162-x
  • 发表时间:
    1986
  • 期刊:
  • 影响因子:
    2
  • 作者:
    John J. Tyson;Odo Diekmann
  • 通讯作者:
    Odo Diekmann
Turing-pattern model of scaffolding proteins that establish spatial asymmetry during the cell cycle of emCaulobacter crescentus/em
在新月柄杆菌(emCaulobacter crescentus)细胞周期中建立空间不对称性的支架蛋白图灵模式模型
  • DOI:
    10.1016/j.isci.2023.106513
  • 发表时间:
    2023-04-21
  • 期刊:
  • 影响因子:
    4.100
  • 作者:
    Chunrui Xu;John J. Tyson;Yang Cao
  • 通讯作者:
    Yang Cao
Analysis of robustness of oscillations in models of the mammalian circadian clock
  • DOI:
    10.1016/j.bpj.2022.11.1554
  • 发表时间:
    2023-02-10
  • 期刊:
  • 影响因子:
  • 作者:
    Xiangyu Yao;Jing Chen;John J. Tyson;Benjamin Heidebrecht
  • 通讯作者:
    Benjamin Heidebrecht
Periodic enzyme synthesis: reconsideration of the theory of oscillatory repression.
周期性酶合成:振荡抑制理论的重新思考。

John J. Tyson的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('John J. Tyson', 18)}}的其他基金

Experimental and Computational Studies of Exit from Mitosis in Budding Yeast
出芽酵母有丝分裂退出的实验和计算研究
  • 批准号:
    7176649
  • 财政年份:
    2007
  • 资助金额:
    $ 48.13万
  • 项目类别:
Experimental and Computational Studies of Exit from Mitosis in Budding Yeast
出芽酵母有丝分裂退出的实验和计算研究
  • 批准号:
    7569962
  • 财政年份:
    2007
  • 资助金额:
    $ 48.13万
  • 项目类别:
Experimental and Computational Studies of Exit from Mitosis in Budding Yeast
出芽酵母有丝分裂退出的实验和计算研究
  • 批准号:
    7339879
  • 财政年份:
    2007
  • 资助金额:
    $ 48.13万
  • 项目类别:
Experimental and Computational Studies of Exit from Mitosis in Budding Yeast
出芽酵母有丝分裂退出的实验和计算研究
  • 批准号:
    7760873
  • 财政年份:
    2007
  • 资助金额:
    $ 48.13万
  • 项目类别:
Stochastic Models of Cell Cycle Regulation in Eukaryotes
真核生物细胞周期调控的随机模型
  • 批准号:
    7161846
  • 财政年份:
    2006
  • 资助金额:
    $ 48.13万
  • 项目类别:
Stochastic Models of Cell Cycle Regulation in Eukaryotes
真核生物细胞周期调控的随机模型
  • 批准号:
    7289061
  • 财政年份:
    2006
  • 资助金额:
    $ 48.13万
  • 项目类别:
Stochastic Models of Cell Cycle Regulation in Eukaryotes
真核生物细胞周期调控的随机模型
  • 批准号:
    7436098
  • 财政年份:
    2006
  • 资助金额:
    $ 48.13万
  • 项目类别:
Stochastic Models of Cell Cycle Regulation in Eukaryotes
真核生物细胞周期调控的随机模型
  • 批准号:
    7675416
  • 财政年份:
    2006
  • 资助金额:
    $ 48.13万
  • 项目类别:
Stochastic Models of Cell Cycle Regulation in Eukaryotes
真核生物细胞周期调控的随机模型
  • 批准号:
    8137719
  • 财政年份:
    2006
  • 资助金额:
    $ 48.13万
  • 项目类别:
Stochastic Models of Cell Cycle Regulation in Eukaryotes
真核生物细胞周期调控的随机模型
  • 批准号:
    7241501
  • 财政年份:
    2006
  • 资助金额:
    $ 48.13万
  • 项目类别:

相似海外基金

RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
  • 批准号:
    2327346
  • 财政年份:
    2024
  • 资助金额:
    $ 48.13万
  • 项目类别:
    Standard Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
  • 批准号:
    2312555
  • 财政年份:
    2024
  • 资助金额:
    $ 48.13万
  • 项目类别:
    Standard Grant
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
  • 批准号:
    BB/Z514391/1
  • 财政年份:
    2024
  • 资助金额:
    $ 48.13万
  • 项目类别:
    Training Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
  • 批准号:
    ES/Z502595/1
  • 财政年份:
    2024
  • 资助金额:
    $ 48.13万
  • 项目类别:
    Fellowship
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
  • 批准号:
    ES/Z000149/1
  • 财政年份:
    2024
  • 资助金额:
    $ 48.13万
  • 项目类别:
    Research Grant
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
  • 批准号:
    23K24936
  • 财政年份:
    2024
  • 资助金额:
    $ 48.13万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
  • 批准号:
    2901648
  • 财政年份:
    2024
  • 资助金额:
    $ 48.13万
  • 项目类别:
    Studentship
ERI: Developing a Trust-supporting Design Framework with Affect for Human-AI Collaboration
ERI:开发一个支持信任的设计框架,影响人类与人工智能的协作
  • 批准号:
    2301846
  • 财政年份:
    2023
  • 资助金额:
    $ 48.13万
  • 项目类别:
    Standard Grant
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
  • 批准号:
    488039
  • 财政年份:
    2023
  • 资助金额:
    $ 48.13万
  • 项目类别:
    Operating Grants
How motor impairments due to neurodegenerative diseases affect masticatory movements
神经退行性疾病引起的运动障碍如何影响咀嚼运动
  • 批准号:
    23K16076
  • 财政年份:
    2023
  • 资助金额:
    $ 48.13万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了