Linking Enzyme and DNA Dynamics: The Mechanism of Extrahelical Damaged based dete
连接酶和 DNA 动力学:基于螺旋外损伤的检测机制
基本信息
- 批准号:7595936
- 负责人:
- 金额:$ 4.12万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-03-16 至 2010-03-15
- 项目状态:已结题
- 来源:
- 关键词:Active SitesAdenineAmidesBase PairingBindingBreathingCellsChemicalsDNADNA RepairDeletion MutationDiscriminationDiseaseEnzyme InteractionEnzymesEquilibriumEventGenomeGenomicsGoalsHealthHereditary DiseaseHumanHuman bodyHydrogen BondingLast NameLifeLinkMeasurementMeasuresMethodsMolecular ConformationMotionMutationPathway interactionsPlayPositioning AttributePrevalenceProcessProtonsPyrimidinePyrimidinesReactionRelaxationResearchRoleSideSiteSite-Directed MutagenesisStructureThermodynamicsThymineTimeUracilVertebral columnWorkbasecancer preventioncancer sitedesignenzyme mechanismgenome-widemethyl groupnovelpublic health relevancerepairedresearch studyuracil-DNA glycosylase
项目摘要
DESCRIPTION (provided by applicant): The long term objective of this research is to elucidate the extrahelical base recognition mechanism used by DNA repair glycosylases to detect and excise damaged bases in genomic DMA. This work relates to the DNA repair processes involved in preserving the integrity of the genome, which impacts human health in many ways, including the prevention of cancer and inheritable genetic diseases. We will use novel NMR and crystallographic methods to uncover the important structural and dynamic aspects of this recognition mechanism termed "base flipping". A key goal is to determine whether enzymes passively capture, and then interrogate, normal and damaged bases that emerge from the DNA duplex because of thermally induced base pair breathing motions, or alternatively, whether enzymes use active mechanisms to promote damaged base expulsion from the DNA stack. The difference is critical. For the former, the structure and dynamics of the damaged site initiates its own repair, and for the latter, the enzyme provides the essential means for ejecting the base. The specific aims are (i) to develop a new chemical approach called "reaction coordinate tuning" to trap an otherwise energetically unstable extrahelical intermediate that occurs very early on the pathway for thymine and uracil flipping by uracil DNA glycosylase. This structure will uncover the earliest interactions that the enzyme uses to promote base flipping, (ii) Directed by the structure, site- directed mutagenesis will be used to delete enzyme side chains involved in stabilizing the extrahelical conformation. The effects of the mutations on the dynamics of the flipped base will be measured using our recently developed NMR imino proton exchange methods. These DNA dynamic measurements will elucidate the detailed mechanism of base pair opening. (Hi) Use NMR relaxation methods to measure the dynamics of enzyme backbone NH groups involved in the earliest step in extrahelical recognition. The enzyme motions must be rapid enough to efficiently trap the uracil in the life-time of its extrahelical state. Hence, DNA dynamics will be linked to enzyme dynamics.
Public Health Relevance: DNA bases are damaged hundreds of time each day in every cell of the human body. Without extraordinary enzyme machines to locate and repair these damaged sites, cancer and disease would be rampant. The goal of this work is to elucidate how these machines locate these sites, with the long term goal of using the recognition principles to design molecules that efficiently direct these enzymes to specific damaged sites in the genome.
描述(由申请人提供):本研究的长期目标是阐明DNA修复糖基化酶用于检测和切除基因组DNA中受损碱基的螺旋外碱基识别机制。这项工作涉及DNA修复过程,涉及保持基因组的完整性,这在许多方面影响人类健康,包括预防癌症和遗传性遗传疾病。我们将使用新的核磁共振和晶体学方法来揭示这种识别机制的重要结构和动力学方面称为“基地翻转”。一个关键的目标是确定酶是否被动地捕获,然后询问,正常的和受损的碱基,从DNA双链体出现,因为热诱导的碱基对呼吸运动,或者,酶是否使用主动机制,以促进受损的碱基从DNA堆栈驱逐。差异是至关重要的。对于前者,受损位点的结构和动力学启动其自身的修复,而对于后者,酶提供了排出碱基的必要手段。具体目标是(i)开发一种称为"反应坐标调谐"的新化学方法,以捕获在尿嘧啶DNA糖基化酶的胸腺嘧啶和尿嘧啶翻转途径上非常早期发生的另外能量不稳定的螺旋外中间体。该结构将揭示酶用于促进碱基翻转的最早的相互作用。(ii)在结构的指导下,定点诱变将用于删除参与稳定螺旋外构象的酶侧链。突变对翻转碱基动力学的影响将使用我们最近开发的NMR亚氨基质子交换方法进行测量。这些DNA动态测量将阐明碱基对开放的详细机制。(Hi)使用NMR弛豫方法测量参与螺旋外识别最早步骤的酶骨架NH基团的动力学。酶的运动必须足够快,以有效地捕获尿嘧啶在其螺旋外状态的寿命。因此,DNA动力学将与酶动力学联系起来。
公共卫生相关性:人体每个细胞中的DNA碱基每天都会被破坏数百次。如果没有特殊的酶机器来定位和修复这些受损的部位,癌症和疾病就会猖獗。这项工作的目标是阐明这些机器如何定位这些位点,长期目标是使用识别原理设计分子,有效地将这些酶引导到基因组中特定的受损位点。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jared Benjamin Parker其他文献
Jared Benjamin Parker的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jared Benjamin Parker', 18)}}的其他基金
Linking Enzyme and DNA Dynamics: The Mechanism of Extrahelical Damaged based dete
连接酶和 DNA 动力学:基于螺旋外损伤的检测机制
- 批准号:
7408401 - 财政年份:2008
- 资助金额:
$ 4.12万 - 项目类别:
相似海外基金
The Role of Adenine Nucleotide Translocase in Mitochondrial Dysfunction Associated Senescence in Chronic Obstructive Pulmonary Disease (COPD)
腺嘌呤核苷酸转位酶在慢性阻塞性肺病(COPD)线粒体功能相关衰老中的作用
- 批准号:
10633608 - 财政年份:2023
- 资助金额:
$ 4.12万 - 项目类别:
Pathways of Succinate Accumulation and Adenine Nucleotide Depletion in Cardiac Ischemia
心脏缺血中琥珀酸积累和腺嘌呤核苷酸消耗的途径
- 批准号:
10794933 - 财政年份:2022
- 资助金额:
$ 4.12万 - 项目类别:
Pathways of Succinate Accumulation and Adenine Nucleotide Depletion in Cardiac Ischemia
心脏缺血中琥珀酸积累和腺嘌呤核苷酸消耗的途径
- 批准号:
10534031 - 财政年份:2022
- 资助金额:
$ 4.12万 - 项目类别:
Development of nobel assay methods for miRNA and adenine methyltransferase using FRET
使用 FRET 开发 miRNA 和腺嘌呤甲基转移酶的诺贝尔检测方法
- 批准号:
21K05120 - 财政年份:2021
- 资助金额:
$ 4.12万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Critical assessment of DNA adenine methylation in brain cells from healthy aging and Alzheimer's disease
健康老龄化和阿尔茨海默病脑细胞 DNA 腺嘌呤甲基化的批判性评估
- 批准号:
10365337 - 财政年份:2021
- 资助金额:
$ 4.12万 - 项目类别:
DNA Methylation at N6-Adenine in Placental Trophoblast Development
胎盘滋养层发育中 N6-腺嘌呤 DNA 甲基化
- 批准号:
10033546 - 财政年份:2020
- 资助金额:
$ 4.12万 - 项目类别:
DNA Methylation at N6-Adenine in Placental Trophoblast Development
胎盘滋养层发育中 N6-腺嘌呤 DNA 甲基化
- 批准号:
10613902 - 财政年份:2020
- 资助金额:
$ 4.12万 - 项目类别:
DNA Methylation at N6-Adenine in Placental Trophoblast Development
胎盘滋养层发育中 N6-腺嘌呤 DNA 甲基化
- 批准号:
10226235 - 财政年份:2020
- 资助金额:
$ 4.12万 - 项目类别:
DNA Methylation at N6-Adenine in Placental Trophoblast Development
胎盘滋养层发育中 N6-腺嘌呤 DNA 甲基化
- 批准号:
10396102 - 财政年份:2020
- 资助金额:
$ 4.12万 - 项目类别:
DNA Methylation at N6-Adenine in Placental Trophoblast Development
胎盘滋养层发育中 N6-腺嘌呤 DNA 甲基化
- 批准号:
10705982 - 财政年份:2020
- 资助金额:
$ 4.12万 - 项目类别: