Real Time Motion correction for Brain MRI

大脑 MRI 的实时运动校正

基本信息

  • 批准号:
    7575217
  • 负责人:
  • 金额:
    $ 5.38万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2008
  • 资助国家:
    美国
  • 起止时间:
    2008-03-01 至 2010-10-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Magnetic resonance imaging (MRI) of the head and brain is a powerful tool for research and diagnosis. During a MRI scan patients are asked to keep their head very still because slight movements can spoil the MRI data, but this can be difficult for young children, elderly people, and those who suffer from Parkinson's disease, schizophrenia, epilepsy, and dementia. Our research will let MRI better serve these patients by allowing accurate data to be collected even when head movements occur during scanning. The standard approach to correct motion artifacts in MRI is retrospective image-based motion detection and correction as implemented in popular analysis packages such as SPM and AIR. This approach is well suited to motion within the imaging plane, but cannot handle substantial through-plane motion which both cannot be described by a single rotation/translation and alters the spin magnetization history of the tissue in the imaging field of view (FOV). Prospective motion correction techniques which measure head position in real time and adjust the FOV prior to data acquisition thus offer a compelling advantage for through-plane motion. However, existing 'prospective techniques such as navigator echoes and PACE impose a delay in data acquisition rates. Our objective is to implement and validate a novel scheme for prospective correction of MRI motion artifact that operates in parallel with the acquisition of imaging data, preventing temporal delay. We have developed a tracking device for real-time monitoring of three- dimensional changes in head position using three RF tracking coils for spatial localization simultaneous with image data acquisition via a standard head coil. Our first specific aim is to implement dynamic motion detection using our tracking device and prospective re-alignment of the imaging plane on a Philips Achieva scanner. Our second specific aim is to create realistic motion artifacts in MRI data from phantoms. Four metrics will be used to evaluate the success of the correction algorithm. Our third specific will study twelve volunteers who have been instructed to turn their heads to track a moving visual stimulus. The metrics used to evaluate the algorithm consist of a) comparison with standard retrospective motion correction using AIR, b) evaluation of the high spatial frequencies present in the images collected with and without the motion correction scheme, c) comparison of line profiles through the images of corrected vs. uncorrected images and d) measurement of the width at = height of small cylinders in one of the phantoms. We expect that our scheme will be better able to address the degree of motion typically seen in patient populations.
描述(由申请人提供):头部和大脑的磁共振成像(MRI)是研究和诊断的有力工具。在MRI扫描期间,患者被要求保持头部非常静止,因为轻微的运动可能会破坏MRI数据,但这对于幼儿,老年人以及患有帕金森病,精神分裂症,癫痫和痴呆症的人来说可能很困难。我们的研究将使MRI更好地为这些患者服务,即使在扫描过程中头部发生移动时也能收集准确的数据。校正MRI中的运动伪影的标准方法是基于回顾性图像的运动检测和校正,如在诸如SPM和AIR的流行分析包中实现的。该方法非常适合于成像平面内的运动,但是不能处理实质上的穿过平面的运动,该穿过平面的运动既不能通过单个旋转/平移来描述,又改变成像视场(FOV)中的组织的自旋磁化历史。前瞻性运动校正技术,测量头部位置在真实的时间和调整FOV之前,数据采集,从而提供了一个引人注目的优势,通过平面运动。然而,现有的“前瞻性技术,如导航回波和起搏器施加延迟的数据采集速率。我们的目标是实现和验证一种新的方案,用于MRI运动伪影的前瞻性校正,该方案与成像数据的采集并行操作,防止时间延迟。我们开发了一种跟踪装置,用于使用三个RF跟踪线圈实时监测头部位置的三维变化,用于空间定位,同时通过标准头部线圈采集图像数据。我们的第一个具体目标是使用我们的跟踪设备和Philips Achieva扫描仪上的成像平面的前瞻性重新对准来实现动态运动检测。我们的第二个具体目标是创建逼真的运动伪影的MRI数据从幻影。将使用四个指标来评价校正算法的成功。我们的第三个具体研究将研究12名志愿者,他们被指示转动头部以跟踪移动的视觉刺激。用于评估算法的度量包括a)与使用AIR的标准回顾性运动校正的比较,B)评估在使用和不使用运动校正方案的情况下收集的图像中存在的高空间频率,c)通过校正图像与未校正图像的图像的线轮廓的比较,以及d)测量在其中一个体模中的小圆柱体的高度处的宽度。我们希望我们的方案能够更好地解决患者人群中常见的运动程度。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Truman R Brown其他文献

Truman R Brown的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Truman R Brown', 18)}}的其他基金

EEG/fMRI Controlled TMS Real-time Neural Feedback in Anti-Depressive Treatment
EEG/fMRI 控制的 TMS 实时神经反馈在抗抑郁治疗中的应用
  • 批准号:
    9056572
  • 财政年份:
    2015
  • 资助金额:
    $ 5.38万
  • 项目类别:
EEG/fMRI Controlled TMS Real-time Neural Feedback in Anti-Depressive Treatment
EEG/fMRI 控制的 TMS 实时神经反馈在抗抑郁治疗中的应用
  • 批准号:
    8874646
  • 财政年份:
    2015
  • 资助金额:
    $ 5.38万
  • 项目类别:
Neuroimaging Core (NI)
神经影像核心 (NI)
  • 批准号:
    9904717
  • 财政年份:
    2014
  • 资助金额:
    $ 5.38万
  • 项目类别:
Neuroimaging Core
神经影像核心
  • 批准号:
    8663381
  • 财政年份:
    2014
  • 资助金额:
    $ 5.38万
  • 项目类别:
Neuroimaging Core (NI)
神经影像核心 (NI)
  • 批准号:
    10232063
  • 财政年份:
    2014
  • 资助金额:
    $ 5.38万
  • 项目类别:
Neuroimaging Core (NI)
神经影像核心 (NI)
  • 批准号:
    10381593
  • 财政年份:
    2014
  • 资助金额:
    $ 5.38万
  • 项目类别:
Pseudo Random Amplitude Modulation of Arterial Spin Labeling
动脉自旋标记的伪随机幅度调制
  • 批准号:
    8445945
  • 财政年份:
    2013
  • 资助金额:
    $ 5.38万
  • 项目类别:
Pseudo Random Amplitude Modulation of Arterial Spin Labeling
动脉自旋标记的伪随机幅度调制
  • 批准号:
    8598872
  • 财政年份:
    2013
  • 资助金额:
    $ 5.38万
  • 项目类别:
Real Time Motion correction for Brain MRI
大脑 MRI 的实时运动校正
  • 批准号:
    8212877
  • 财政年份:
    2008
  • 资助金额:
    $ 5.38万
  • 项目类别:
Real Time Motion correction for Brain MRI
大脑 MRI 的实时运动校正
  • 批准号:
    7472000
  • 财政年份:
    2008
  • 资助金额:
    $ 5.38万
  • 项目类别:

相似海外基金

Approximate algorithms and architectures for area efficient system design
区域高效系统设计的近似算法和架构
  • 批准号:
    LP170100311
  • 财政年份:
    2018
  • 资助金额:
    $ 5.38万
  • 项目类别:
    Linkage Projects
AMPS: Rank Minimization Algorithms for Wide-Area Phasor Measurement Data Processing
AMPS:用于广域相量测量数据处理的秩最小化算法
  • 批准号:
    1736326
  • 财政年份:
    2017
  • 资助金额:
    $ 5.38万
  • 项目类别:
    Standard Grant
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
  • 批准号:
    1686-2013
  • 财政年份:
    2017
  • 资助金额:
    $ 5.38万
  • 项目类别:
    Discovery Grants Program - Individual
Rigorous simulation of speckle fields caused by large area rough surfaces using fast algorithms based on higher order boundary element methods
使用基于高阶边界元方法的快速算法对大面积粗糙表面引起的散斑场进行严格模拟
  • 批准号:
    375876714
  • 财政年份:
    2017
  • 资助金额:
    $ 5.38万
  • 项目类别:
    Research Grants
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
  • 批准号:
    1686-2013
  • 财政年份:
    2016
  • 资助金额:
    $ 5.38万
  • 项目类别:
    Discovery Grants Program - Individual
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
  • 批准号:
    1686-2013
  • 财政年份:
    2015
  • 资助金额:
    $ 5.38万
  • 项目类别:
    Discovery Grants Program - Individual
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
  • 批准号:
    1686-2013
  • 财政年份:
    2014
  • 资助金额:
    $ 5.38万
  • 项目类别:
    Discovery Grants Program - Individual
AREA: Optimizing gene expression with mRNA free energy modeling and algorithms
区域:利用 mRNA 自由能建模和算法优化基因表达
  • 批准号:
    8689532
  • 财政年份:
    2014
  • 资助金额:
    $ 5.38万
  • 项目类别:
CPS: Synergy: Collaborative Research: Distributed Asynchronous Algorithms and Software Systems for Wide-Area Monitoring of Power Systems
CPS:协同:协作研究:用于电力系统广域监控的分布式异步算法和软件系统
  • 批准号:
    1329780
  • 财政年份:
    2013
  • 资助金额:
    $ 5.38万
  • 项目类别:
    Standard Grant
CPS: Synergy: Collaborative Research: Distributed Asynchronous Algorithms and Software Systems for Wide-Area Mentoring of Power Systems
CPS:协同:协作研究:用于电力系统广域指导的分布式异步算法和软件系统
  • 批准号:
    1329745
  • 财政年份:
    2013
  • 资助金额:
    $ 5.38万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了