Computational Methods for Directed Functional Genomics

定向功能基因组学的计算方法

基本信息

  • 批准号:
    7283832
  • 负责人:
  • 金额:
    $ 40.24万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2005
  • 资助国家:
    美国
  • 起止时间:
    2005-09-01 至 2010-08-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Computational prediction of gene function (or phenotype) can reduce the scale of an experimental problem by focusing attention on a subset of possible experiments. Current function annotation databases-e.g., the Saccharomyces Genome Database (SGD) annotation of genes with Gene Ontology (GO) functions-are critically important resources, but were not designed to host computational predictions Although SGD and several other annotation databases label predictions as such, they provide no measures of confidence. The need exists for quantitative predictions, as distinct from qualitative "somebody said so" predictions. Probabilistic scoring systems, in which the score communicates the probability of veracity, are likely to be the most useful. We will generate probabilistic predictions by developing probabilistic models for predicting function and phenotype. For reasons of data availability, we use S. cerevisiae and C. elegans as model systems. We will also generate probabilistic models to predict protein and genetic interactions. We will exploit probabilistic networks of protein and genetic interaction in several ways. We will apply ideas from communication theory (2-terminal network reliability) to predict new members of protein complexes from probabilistic protein networks. We will develop computational methods to guide efficient discovery of genetic interactions in S. cerevisiae, as a model for guiding future high-throughput studies in metazoans. We will exploit probabilistic synthetic lethal interaction networks to identify drug mechanism of action. We will disseminate predictions to the broader biomedical community. We propose a distributed quantitative prediction resource inspired by the DAS system of distributed genome annotation. We will adapt previously developed interfaces for browsing, searching, and retrieving probabilistic annotations to enhance their utility. In Aim 1. we develop, apply, and validate methods for predicting function, phenotype, physical and genetic interaction in S. cerevisiae and C. elegans. In Aim 2. we exploit probabilistic networks of protein and genetic interaction in S. cerevisiae to elucidate network structure, to guide functional genomic experiments, and to reveal drug mechanism of action. In Aim, 3. we disseminate probabilistic predictions within a simple, generic, distributed software framework for sharing and browsing quantitative predictions.
描述(由申请人提供):基因功能(或表型)的计算预测可以通过将注意力集中在可能实验的子集上来减少实验问题的规模。当前函数注释数据库-例如,具有基因本体论(GO)功能的基因的酵母基因组数据库(SGD)注释是非常重要的资源,但并不是设计用于主持计算预测。尽管SGD和几个其它注释数据库这样标记预测,但它们不提供置信度的测量。定量预测的必要性是存在的,与定性的“有人这么说”的预测不同。概率评分系统可能是最有用的,其中分数传达了真实性的概率。 我们将通过开发用于预测功能和表型的概率模型来生成概率预测。出于数据可用性的原因,我们使用S。酿酒酵母和C. elegans作为模型系统。 我们还将生成概率模型来预测蛋白质和遗传相互作用。我们将以几种方式利用蛋白质和遗传相互作用的概率网络。我们将应用通信理论(2-末端网络可靠性)的思想,从概率蛋白质网络预测蛋白质复合物的新成员。我们将开发计算方法来指导有效地发现S.酿酒酵母,作为一个模型,指导未来的高通量研究后生动物。我们将利用概率合成致命的相互作用网络,以确定药物的作用机制。 我们将向更广泛的生物医学界传播预测。我们提出了一个分布式定量预测资源的启发分布式基因组注释DAS系统。我们将适应以前开发的界面浏览,搜索和检索概率注释,以提高其效用。 在目标1中。我们开发、应用并验证了预测S.酿酒酵母和C.优雅的 在目标2中。我们利用概率网络的蛋白质和遗传相互作用的S。酿酒酵母来阐明网络结构,指导功能基因组实验,并揭示药物作用机制。 在目标,3。我们在一个简单的、通用的、分布式的软件框架内传播概率预测,用于共享和浏览定量预测。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Frederick P Roth其他文献

Q&A: Epistasis The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters
  • DOI:
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Frederick P Roth;H. Lipshitz;Brenda J Andrews
  • 通讯作者:
    Brenda J Andrews

Frederick P Roth的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Frederick P Roth', 18)}}的其他基金

A proactive missense variant atlas for the Autoimmune Regulator
自身免疫调节器的主动错义变异图谱
  • 批准号:
    10575777
  • 财政年份:
    2023
  • 资助金额:
    $ 40.24万
  • 项目类别:
Technology for ten-minute resolution protein interaction mapping at proteome scale
蛋白质组规模十分钟分辨率蛋白质相互作用图谱技术
  • 批准号:
    10303722
  • 财政年份:
    2021
  • 资助金额:
    $ 40.24万
  • 项目类别:
Computational Methods for Directed Functional Genomics
定向功能基因组学的计算方法
  • 批准号:
    8099225
  • 财政年份:
    2010
  • 资助金额:
    $ 40.24万
  • 项目类别:
Technology for large-scale genetic interaction discovery in S. cerevisiae
酿酒酵母大规模遗传相互作用发现技术
  • 批准号:
    7514316
  • 财政年份:
    2008
  • 资助金额:
    $ 40.24万
  • 项目类别:
Technology for large-scale genetic interaction discovery in S. cerevisiae
酿酒酵母大规模遗传相互作用发现技术
  • 批准号:
    7676162
  • 财政年份:
    2008
  • 资助金额:
    $ 40.24万
  • 项目类别:
Methods for engineering S. cerevisiae strains carrying multiple precise deletions
工程化携带多个精确缺失的酿酒酵母菌株的方法
  • 批准号:
    7313514
  • 财政年份:
    2007
  • 资助金额:
    $ 40.24万
  • 项目类别:
Methods for engineering S. cerevisiae strains carrying multiple precise deletions
工程化携带多个精确缺失的酿酒酵母菌株的方法
  • 批准号:
    7483288
  • 财政年份:
    2007
  • 资助金额:
    $ 40.24万
  • 项目类别:
Computational Methods for Directed Functional Genomics
定向功能基因组学的计算方法
  • 批准号:
    7487999
  • 财政年份:
    2005
  • 资助金额:
    $ 40.24万
  • 项目类别:
Computational Methods for Directed Functional Genomics
定向功能基因组学的计算方法
  • 批准号:
    7679365
  • 财政年份:
    2005
  • 资助金额:
    $ 40.24万
  • 项目类别:
Computational Methods for Directed Functional Genomics
定向功能基因组学的计算方法
  • 批准号:
    7116505
  • 财政年份:
    2005
  • 资助金额:
    $ 40.24万
  • 项目类别:

相似海外基金

Nonlocal Variational Problems from Physical and Biological Models
物理和生物模型的非局部变分问题
  • 批准号:
    2306962
  • 财政年份:
    2023
  • 资助金额:
    $ 40.24万
  • 项目类别:
    Standard Grant
Point-of-care optical spectroscopy platform and novel ratio-metric algorithms for rapid and systematic functional characterization of biological models in vivo
即时光学光谱平台和新颖的比率度量算法,可快速、系统地表征体内生物模型的功能
  • 批准号:
    10655174
  • 财政年份:
    2023
  • 资助金额:
    $ 40.24万
  • 项目类别:
Multi-scale stochastic systems motivated by biological models
由生物模型驱动的多尺度随机系统
  • 批准号:
    RGPIN-2015-06573
  • 财政年份:
    2022
  • 资助金额:
    $ 40.24万
  • 项目类别:
    Discovery Grants Program - Individual
Micro-electrofluidic platforms for monitoring 3D human biological models
用于监测 3D 人体生物模型的微电流体平台
  • 批准号:
    DP220102872
  • 财政年份:
    2022
  • 资助金额:
    $ 40.24万
  • 项目类别:
    Discovery Projects
Multi-scale stochastic systems motivated by biological models
由生物模型驱动的多尺度随机系统
  • 批准号:
    RGPIN-2015-06573
  • 财政年份:
    2021
  • 资助金额:
    $ 40.24万
  • 项目类别:
    Discovery Grants Program - Individual
Multi-scale stochastic systems motivated by biological models
由生物模型驱动的多尺度随机系统
  • 批准号:
    RGPIN-2015-06573
  • 财政年份:
    2020
  • 资助金额:
    $ 40.24万
  • 项目类别:
    Discovery Grants Program - Individual
Harnessing machine learning and cloud computing to test biological models of the role of white matter in human learning
利用机器学习和云计算来测试白质在人类学习中的作用的生物模型
  • 批准号:
    2004877
  • 财政年份:
    2020
  • 资助金额:
    $ 40.24万
  • 项目类别:
    Fellowship Award
A Portable low-cost, Point of Investigation CapCell Scope to Image and Quantify the Major Axes of Metabolism and the Associated Vasculature in In vitro and In vivo Biological Models
便携式低成本调查点 CapCell 示波器,用于对体外和体内生物模型中的主要代谢轴和相关脉管系统进行成像和量化
  • 批准号:
    9899988
  • 财政年份:
    2019
  • 资助金额:
    $ 40.24万
  • 项目类别:
Multi-scale stochastic systems motivated by biological models
由生物模型驱动的多尺度随机系统
  • 批准号:
    RGPIN-2015-06573
  • 财政年份:
    2019
  • 资助金额:
    $ 40.24万
  • 项目类别:
    Discovery Grants Program - Individual
A Portable low-cost, Point of Investigation CapCell Scope to Image and Quantify the Major Axes of Metabolism and the Associated Vasculature in In vitro and In vivo Biological Models
便携式低成本调查点 CapCell 示波器,用于对体外和体内生物模型中的主要代谢轴和相关脉管系统进行成像和量化
  • 批准号:
    9753458
  • 财政年份:
    2019
  • 资助金额:
    $ 40.24万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了