COMPUTATIONAL STUDIES OF COMPLEX PROCESSES IN BIOLOGICAL MACROMOLECULAR SYSTEMS
生物大分子系统复杂过程的计算研究
基本信息
- 批准号:7601276
- 负责人:
- 金额:$ 0.03万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-08-01 至 2008-07-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAlgorithmsBiologicalComplexComputer Retrieval of Information on Scientific Projects DatabaseDevelopmentElectrostaticsFree EnergyFundingGlutamate ReceptorGrantInstitutionMembraneMethodsModelingMotionPhosphotransferasesPotassium ChannelProcessRangeReactionResearchResearch PersonnelResourcesSamplingSampling BiasesSourceSystemUnited States National Institutes of Healthabstractingbasecomputer studiesmacromoleculemolecular dynamicsparallel processingresearch studysimulationsrc-Family Kinasessupercomputer
项目摘要
This subproject is one of many research subprojects utilizing the
resources provided by a Center grant funded by NIH/NCRR. The subproject and
investigator (PI) may have received primary funding from another NIH source,
and thus could be represented in other CRISP entries. The institution listed is
for the Center, which is not necessarily the institution for the investigator.
free energy sampling simulation permeation channels kinases membranes solvation solvation Abstract: This proposal is the continuation of the projects supported by previous NRAC allocation grants. The projects exploit the advances in molecular dynamics (MD) simulations years with respect to accuracy of force fields, treatment of long-range electrostatics, efficiency of integration algorithms, parallel processing, and other technical issues. Computations based on detailed atomic models can make significant contributions to the understanding of biomolecular systems. It is, however, essential to develop special strategies to get quantitatively meaningful results that can be compared with experiments. Many questions cannot be addressed with simple ``brute force'' MD simulation methods. For example, free energy perturbation and potential of mean force (PMF) calculations with biased sampling methods along multi-dimensional reaction coordinates are an attractive method to overcome the sampling difficulties without sacrificing accuracy. The application of special strategies to large-scale motions in macromolecules remains very challenging. In the current proposal, we describe several computational projects aimed at understanding complex and diverse biological systems such as: potassium channels, tyrosine kinases of the Src family, glutamate receptor, and the development and refinement of a fully polarizable force field for biomolecular simulations using the classical Drude oscillator model. It would not be possible to make meaningful progress in these projects without access to supercomputer resources.
这个子项目是许多研究子项目中利用
资源由NIH/NCRR资助的中心拨款提供。子项目和
调查员(PI)可能从NIH的另一个来源获得了主要资金,
并因此可以在其他清晰的条目中表示。列出的机构是
该中心不一定是调查人员的机构。
自由能采样模拟渗透通道激活膜溶剂化摘要:这项建议是先前NRAC拨款支持的项目的继续。这些项目利用了分子动力学(MD)模拟多年在力场精度、远程静电处理、积分算法的效率、并行处理和其他技术问题方面的进展。基于详细原子模型的计算可以为理解生物分子系统做出重大贡献。然而,开发特殊的策略以获得可以与实验相比较的有数量意义的结果是至关重要的。许多问题不能用简单的“蛮力”MD模拟方法解决。例如,在多维反应坐标上采用有偏采样方法的自由能微扰和平均力势(PMF)计算是一种在不牺牲精度的情况下克服采样困难的有吸引力的方法。将特殊策略应用于大分子的大规模运动仍然非常具有挑战性。在当前的提案中,我们描述了几个旨在了解复杂和多样化的生物系统的计算项目,例如:钾通道、Src家族的酪氨酸激酶、谷氨酸受体,以及利用经典的Drude振子模型开发和改进用于生物分子模拟的完全可极化的力场。如果没有超级计算机资源,就不可能在这些项目中取得有意义的进展。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
BENOIT ROUX其他文献
BENOIT ROUX的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('BENOIT ROUX', 18)}}的其他基金
STRUCTURAL DETERMINANTS OF FLICKERING IN K+ CHANNELS
K 通道闪烁的结构决定因素
- 批准号:
8364329 - 财政年份:2011
- 资助金额:
$ 0.03万 - 项目类别:
相似海外基金
CAREER: Transferring biological networks emergent principles to drone swarm collaborative algorithms
职业:将生物网络新兴原理转移到无人机群协作算法
- 批准号:
2339373 - 财政年份:2024
- 资助金额:
$ 0.03万 - 项目类别:
Continuing Grant
Point-of-care optical spectroscopy platform and novel ratio-metric algorithms for rapid and systematic functional characterization of biological models in vivo
即时光学光谱平台和新颖的比率度量算法,可快速、系统地表征体内生物模型的功能
- 批准号:
10655174 - 财政年份:2023
- 资助金额:
$ 0.03万 - 项目类别:
Statistical Inference from Multiscale Biological Data: theory, algorithms, applications
多尺度生物数据的统计推断:理论、算法、应用
- 批准号:
EP/Y037375/1 - 财政年份:2023
- 资助金额:
$ 0.03万 - 项目类别:
Research Grant
Analysis of words: algorithms for biological sequences, music and texts
单词分析:生物序列、音乐和文本的算法
- 批准号:
RGPIN-2016-03661 - 财政年份:2021
- 资助金额:
$ 0.03万 - 项目类别:
Discovery Grants Program - Individual
Analysis of words: algorithms for biological sequences, music and texts
单词分析:生物序列、音乐和文本的算法
- 批准号:
RGPIN-2016-03661 - 财政年份:2019
- 资助金额:
$ 0.03万 - 项目类别:
Discovery Grants Program - Individual
Building flexible biological particle detection algorithms for emerging real-time instrumentation
为新兴实时仪器构建灵活的生物颗粒检测算法
- 批准号:
2278799 - 财政年份:2019
- 资助金额:
$ 0.03万 - 项目类别:
Studentship
CAREER: Microscopy Image Analysis to Aid Biological Discovery: Optics, Algorithms, and Community
职业:显微镜图像分析有助于生物发现:光学、算法和社区
- 批准号:
2019967 - 财政年份:2019
- 资助金额:
$ 0.03万 - 项目类别:
Standard Grant
Analysis of words: algorithms for biological sequences, music and texts
单词分析:生物序列、音乐和文本的算法
- 批准号:
RGPIN-2016-03661 - 财政年份:2018
- 资助金额:
$ 0.03万 - 项目类别:
Discovery Grants Program - Individual
Analysis of words: algorithms for biological sequences, music and texts
单词分析:生物序列、音乐和文本的算法
- 批准号:
RGPIN-2016-03661 - 财政年份:2017
- 资助金额:
$ 0.03万 - 项目类别:
Discovery Grants Program - Individual
Analysis of words: algorithms for biological sequences, music and texts
单词分析:生物序列、音乐和文本的算法
- 批准号:
RGPIN-2016-03661 - 财政年份:2016
- 资助金额:
$ 0.03万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




