Quantitative Analysis of TGF-b/Smad Signaling Dynamics

TGF-b/Smad 信号传导动力学的定量分析

基本信息

  • 批准号:
    7467828
  • 负责人:
  • 金额:
    $ 25.44万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2008
  • 资助国家:
    美国
  • 起止时间:
    2008-04-01 至 2012-03-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Cells adapt to their environment largely through the activities of signal transduction networks. Aberrations of normal signaling networks can lead to human diseases such as cancer and diabetes. Transforming Growth Factor-_ (TGF-_) is a prominent signaling pathway that regulates diverse aspects of cellular homeostasis including proliferation, differentiation, migration, and death. How a single cytokine like TGF-_ can exert such diverse biological effects in a cell context- dependent manner is an outstanding question in biology. While it is clear that TGF-_ signals through the intracellular mediator Smad proteins to regulate gene expression, relatively little is known about how cells respond to different ligand doses and how variations in ligand exposure impact Smad signaling dynamics and subsequent gene expression. Our long-term goal is to predict cellular responses to TGF-_ signaling based on molecular mechanisms. The objective of this application is to quantitatively assess Smad signaling dynamics and develop a comprehensive mathematical model that is able to predict systems-level ligand dose-dependent Smad signaling dynamics. We hypothesize the following principles of TGF-_ signal transduction, upon which we have configured the proposal: 1) Cells decode the ligand dose (TGF-_ molecules per cell) through a T_RII receptor trafficking-dependent mechanism, 2) Cells transduce the signal inside the cell by setting the rates of R-Smad phosphorylation relative to the rate of dephosphorylation, and 3) Smad oligomerization fine-tunes the signal dynamic properties and serves as a mechanism for signal specificity and target diversity. Our proposal evaluates the contribution of the diverse events in TGF-_ signaling to determining the overall signal, which in turn determines the resulting gene expression profile and biological response. We will investigate our hypothesis using a systems biology approach that integrates kinetic experiments and mathematical modeling, as described in the following specific aims:1) Determine the mechanism by which cells decode the TGF-_ ligand dose. 2) Determine how the rates of R-Smad phosphorylation and dephosphorylation regulate Smad signal transduction. 3) Evaluate the dynamic properties of Smad oligomerization. TGF-_ signaling is a dynamic process that operates in the context of global cellular regulatory network. The system properties and quantitative aspects of this network are poorly defined. We developed an initial mathematical model for TGF-_/Smad signaling and we are well positioned to verify these predictions and the model assumptions through experiment and further modeling analysis. We expect that applying the innovative systems biology approach to study TGF-_/Smad signaling will fundamentally advance our knowledge in this major signaling network. In particular, we foresee using this model to predict biological responses to TGF-_ in health and disease. Given that the TGF-_ signal transduction pathway is frequently targeted for aberrations in human cancer cells, a quantitative understanding of the pathway will be essential for evaluating the efficacy of antitumor drugs and mitigating undesirable side effects in therapeutic interventions. PUBLIC HEALTH RELEVANCE: Transforming Growth Factor-_ (TGF-_) is a prominent signaling pathway that regulates diverse aspects of cellular homeostasis including proliferation, differentiation, migration, and death. The objective of this application is to quantitatively assess TGF-_ signaling dynamics and develop a comprehensive mathematical model that is able to predict biological responses to TGF-_ in health and disease. Given that the TGF-_ signal transduction pathway is frequently targeted for aberrations in human cancer cells, a quantitative understanding of the pathway will be essential for evaluating the efficacy of antitumor drugs and mitigating undesirable side effects in therapeutic interventions.
描述(由申请人提供):细胞主要通过信号转导网络的活动来适应其环境。正常信号网络的异常可能导致人类疾病,如癌症和糖尿病。转化生长因子(TGF-β)是一种重要的信号通路,调节细胞内稳态的各个方面,包括增殖、分化、迁移和死亡。单个细胞因子如TGF-β如何以细胞环境依赖性方式发挥如此多样的生物学效应是生物学中的一个突出问题。虽然很清楚TGF-β通过细胞内介体Smad蛋白质发出信号以调节基因表达,但关于细胞如何响应不同配体剂量以及配体暴露的变化如何影响Smad信号传导动力学和随后的基因表达的知识相对较少。我们的长期目标是基于分子机制预测细胞对TGF-β信号的反应。本申请的目的是定量评估Smad信号动力学,并开发一个全面的数学模型,能够预测系统水平的配体剂量依赖性Smad信号动力学。我们假设了TGF-β信号转导的以下原理,据此我们配置了该提案:1)细胞解码配体剂量2)细胞通过设定R-Smad磷酸化速率相对于去磷酸化速率来调节细胞内的信号,和3)Smad寡聚化精细调节信号动力学性质,并作为信号特异性和靶标多样性的机制。我们的提议评估了TGF-β信号传导中不同事件对确定总体信号的贡献,这反过来又决定了所得的基因表达谱和生物学应答。我们将使用整合动力学实验和数学建模的系统生物学方法来研究我们的假设,如以下具体目标所述:1)确定细胞解码TGF-β配体剂量的机制。2)确定R-Smad磷酸化和去磷酸化的速率如何调节Smad信号转导。3)评价Smad低聚反应的动力学性质。TGF-β信号转导是一个动态的过程,在全球细胞调节网络的背景下运作。该网络的系统属性和定量方面的定义很差。我们开发了TGF-_/Smad信号传导的初始数学模型,并且我们完全有能力通过实验和进一步的建模分析来验证这些预测和模型假设。我们期望应用创新的系统生物学方法来研究TGF-β/Smad信号传导将从根本上推进我们在这个主要信号传导网络中的知识。特别是,我们预见使用该模型来预测健康和疾病中对TGF-β的生物反应。鉴于TGF-β信号转导途径经常被靶向用于人类癌细胞中的畸变,对该途径的定量理解对于评估抗肿瘤药物的功效和减轻治疗干预中的不良副作用将是必不可少的。公共卫生相关性: 转化生长因子(TGF-β)是一种重要的信号通路,调节细胞内稳态的各个方面,包括增殖、分化、迁移和死亡。本申请的目的是定量评估TGF-β信号转导动力学,并开发一个全面的数学模型,能够预测健康和疾病中对TGF-β的生物反应。鉴于TGF-β信号转导途径经常被靶向用于人类癌细胞中的畸变,对该途径的定量理解对于评估抗肿瘤药物的功效和减轻治疗干预中的不良副作用将是必不可少的。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

XUEDONG LIU其他文献

XUEDONG LIU的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('XUEDONG LIU', 18)}}的其他基金

Neuron Specific mRNA Transfer With Fusogenic Microvesicles
使用融合微泡进行神经元特异性 mRNA 转移
  • 批准号:
    10578732
  • 财政年份:
    2022
  • 资助金额:
    $ 25.44万
  • 项目类别:
Programmable Microvesicles for Intracellular Macromolecule Delivery
用于细胞内大分子递送的可编程微泡
  • 批准号:
    10350387
  • 财政年份:
    2022
  • 资助金额:
    $ 25.44万
  • 项目类别:
Programmable Microvesicles for Intracellular Macromolecule Delivery
用于细胞内大分子递送的可编程微泡
  • 批准号:
    10544761
  • 财政年份:
    2022
  • 资助金额:
    $ 25.44万
  • 项目类别:
Programmable Microvesicles for Intracellular Macromolecule Delivery
用于细胞内大分子递送的可编程微泡
  • 批准号:
    10798752
  • 财政年份:
    2022
  • 资助金额:
    $ 25.44万
  • 项目类别:
Development of a Gectosome Therapy for Cardiovascular Diseases
心血管疾病的基因组疗法的开发
  • 批准号:
    10384422
  • 财政年份:
    2022
  • 资助金额:
    $ 25.44万
  • 项目类别:
Neuron Specific mRNA Transfer With Fusogenic Microvesicles
使用融合微泡进行神经元特异性 mRNA 转移
  • 批准号:
    10451377
  • 财政年份:
    2022
  • 资助金额:
    $ 25.44万
  • 项目类别:
Programmable Microvesicles for Intracellular Macromolecule Delivery
用于细胞内大分子递送的可编程微泡
  • 批准号:
    10676021
  • 财政年份:
    2022
  • 资助金额:
    $ 25.44万
  • 项目类别:
Quantitative Analysis of Mechanochemical Signaling in Wound Response
伤口反应中机械化学信号的定量分析
  • 批准号:
    9303654
  • 财政年份:
    2016
  • 资助金额:
    $ 25.44万
  • 项目类别:
FACSAria Fusion Cell Sorter
FACSAria 融合细胞分选仪
  • 批准号:
    9075287
  • 财政年份:
    2016
  • 资助金额:
    $ 25.44万
  • 项目类别:
Quantitative Analysis of Mechanochemical Signaling in Wound Response
伤口反应中机械化学信号的定量分析
  • 批准号:
    9353292
  • 财政年份:
    2015
  • 资助金额:
    $ 25.44万
  • 项目类别:

相似海外基金

Elucidating the molecular basis and expanding the biological applications of the glycosyltransferases using biochemical and structural biology approaches
利用生化和结构生物学方法阐明糖基转移酶的分子基础并扩展其生物学应用
  • 批准号:
    23K14138
  • 财政年份:
    2023
  • 资助金额:
    $ 25.44万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Upsampling of low-resolution/large-volume 3D tomographic images using generative adversarial neural networks applied to biological anthropology, medical imaging, and evolutionary biology
使用应用于生物人类学、医学成像和进化生物学的生成对抗神经网络对低分辨率/大容量 3D 断层扫描图像进行上采样
  • 批准号:
    571519-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 25.44万
  • 项目类别:
    Alliance Grants
The biology of Ciceribacter spp. and their adaptations as biological chassis for engineered nitrogen fixation
西塞里杆菌属的生物学。
  • 批准号:
    2735213
  • 财政年份:
    2022
  • 资助金额:
    $ 25.44万
  • 项目类别:
    Studentship
NSF Postdoctoral Fellowship in Biology: Symbiosis as a Means of Survival for Biological Soil Crust Microbes
NSF 生物学博士后奖学金:共生作为生物土壤结皮微生物的生存手段
  • 批准号:
    2209217
  • 财政年份:
    2022
  • 资助金额:
    $ 25.44万
  • 项目类别:
    Fellowship Award
Conference: 2023 Stochastic Physics in Biology: Bridging Stochastic Physical Theories with Biological Experiments
会议:2023 年生物学中的随机物理学:将随机物理理论与生物实验联系起来
  • 批准号:
    2242530
  • 财政年份:
    2022
  • 资助金额:
    $ 25.44万
  • 项目类别:
    Standard Grant
From Big Biological Data to Tangible Insights: Designing tangible and multi-display interactions to support data analysis and model building in the biology domain
从生物大数据到有形洞察:设计有形和多显示交互以支持生物学领域的数据分析和模型构建
  • 批准号:
    RGPIN-2021-03987
  • 财政年份:
    2022
  • 资助金额:
    $ 25.44万
  • 项目类别:
    Discovery Grants Program - Individual
Engineering of next-generation synthetic biology tools for biological applications
用于生物应用的下一代合成生物学工具的工程
  • 批准号:
    RGPIN-2019-07002
  • 财政年份:
    2022
  • 资助金额:
    $ 25.44万
  • 项目类别:
    Discovery Grants Program - Individual
BEORHN: Biological Enzymatic Oxidation of Reactive Hydroxylamine in Nitrification via Combined Structural Biology and Molecular Simulation
BEORHN:通过结合结构生物学和分子模拟对硝化反应中的活性羟胺进行生物酶氧化
  • 批准号:
    BB/V01577X/1
  • 财政年份:
    2022
  • 资助金额:
    $ 25.44万
  • 项目类别:
    Research Grant
NSF Postdoctoral Fellowship in Biology FY 2020: Integrating biological collections and observational data sources to estimate long-term butterfly population trends
2020 财年 NSF 生物学博士后奖学金:整合生物收藏和观测数据源来估计蝴蝶种群的长期趋势
  • 批准号:
    2010698
  • 财政年份:
    2021
  • 资助金额:
    $ 25.44万
  • 项目类别:
    Fellowship Award
Engineering of next-generation synthetic biology tools for biological applications
用于生物应用的下一代合成生物学工具的工程
  • 批准号:
    RGPIN-2019-07002
  • 财政年份:
    2021
  • 资助金额:
    $ 25.44万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了