Quantitative Analysis of Mechanochemical Signaling in Wound Response
伤口反应中机械化学信号的定量分析
基本信息
- 批准号:9353292
- 负责人:
- 金额:$ 38.44万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-14 至 2020-08-31
- 项目状态:已结题
- 来源:
- 关键词:AffectAtomic Force MicroscopyBiochemicalBiologicalBiosensorCell CommunicationCellsClinical TrialsComplexCoupledDevelopmentEpidermal Growth Factor ReceptorEpithelialEventFeedbackFluorescence Resonance Energy TransferGenetic TranscriptionGoalsGrowth FactorHydrogelsInvestigationKineticsMAP Kinase GeneMeasurementMeasuresMechanicsModelingMolecularMovementNeoplasm MetastasisOutcomePathologicPathway interactionsPlayProcessPropertyRegulationRoleSignal TransductionSkinSpecific qualifier valueSystemSystems BiologyTherapeuticTissuesTractionTransforming Growth Factor betaTransforming Growth FactorsWound HealingWounds and Injuriesanalytical methodbasecell motilitydesignexperienceexperimental studyimprovedin vivoinsightlive cell imagingmathematical modelmechanical forcemechanotransductionmigrationnetwork architecturenovelprogramspromoterpublic health relevancerepairedresponsespatiotemporalsuccesstissue repairtooltumor progressionwound
项目摘要
DESCRIPTION: Wound healing involves complex interplay between growth factors and cell-cell interactions. TGF-ß is one of the key growth factors that is known to be involved in wound healing in vivo. TGF-ß secretion coincides with the early stages of tissue repair and promotes collective cell migration. This revelation has prompted numerous clinical trials using this growth factor to treat nonhealing wounds. Despite much enthusiasm, there is not much success with its use as a wound promoter. The limited success using growth factors for wound therapies can in part be attributed to the fact that wound healing growth factors act in a concerted manner and in sequence to regulate the repair process. Limited mechanistic understanding of the spatiotemporal regulation of wound healing signaling response, coupled with the lack of quantitative modeling and analytical methods, has hampered the rational development of new improved therapeutic strategies. Our long-term goal is to develop a quantitative framework to investigate concerted action of growth factors and mechanotransduction in normal and pathological wound healing. Although the vast majority of investigations describe wound healing cellular responses to biochemical signals, it is becoming increasingly clear that mechanical force can also serve as an input for signal transduction. The objective of this application is to quantitatively assess integration of TGF-ß signaling and mechanical strain and develop a comprehensive mathematical model that is able to predict systems-level wound healing dynamics. We hypothesize: 1) TGF-ß signaling elevates the levels of TACE in migrating epithelial sheet; 2) TGF-ß promotes elevated TACE activity through local changes in mechanical interactions; 3) TGF-ß engages a positive feedback loop between EGFR signaling and TACE to sustain elevated EGFR signaling near a wound's border. We will investigate our hypothesis using a systems biology approach that integrates kinetic experiments and mathematical modeling by pursuing three specific aims: 1) Identify signaling motifs that detect the presence of a wound and control the spatially constrained activation of MAPK dynamics in response to global treatment of TGF-ß; 2) Determine the effect of mechanical force on the dynamic properties of wound response signaling by TGF-ß; 3) Dissect and characterize the mechanisms of positive feedback between TACE activity and EGFR signaling activity in motile cells. If successful, the proposed studies will provide a general framework to analyze concerted actions of growth factors and mechanical signals.
描述:伤口愈合涉及生长因子和细胞相互作用之间的复杂相互作用。 TGF-ß是已知与体内伤口愈合有关的关键生长因子之一。 TGF-ß分泌与组织修复的早期阶段相吻合,并促进集体细胞迁移。这种关系促使许多使用该生长因子来治疗非治疗伤口的临床试验。尽管热情充满热情,但它用作伤口促进者并没有太大的成功。使用伤口疗法的生长因子的成功有限可以部分归因于以下事实:伤口愈合生长因子以一致的方式起作用,并顺序调节修复过程。对伤口愈合信号反应的空间时间调节的机械理解有限,再加上缺乏定量建模和分析方法,这阻碍了新的改进治疗策略的合理发展。我们的长期目标是开发一个定量框架,以研究生长因子的一致作用和在正常和病理伤口愈合中的机械翻译。尽管绝大多数投资都描述了伤口愈合细胞对生化信号的反应,但越来越清楚的是机械力也可以作为信号转导的输入。该应用的目的是定量评估TGF-ß信号传导和机械应变的整合,并开发一个能够预测系统级伤口愈合动力学的综合数学模型。我们假设:1)通过机械相互作用的局部变化,TGF-ß信号传递升高的TACE活性升高; 3)TGF-ß参与EGFR信号和TACE之间的积极反馈回路,以维持伤口边界附近的EGFR信号。我们将使用一种系统生物学方法来研究我们的假设,该方法通过追求三个特定目的来整合动力学实验和数学建模:1)确定检测伤口的存在并控制MAPK动力学的空间约束激活,以响应TGF-ß的全局处理,以响应MAPK动力学的空间约束激活; 2)确定机械力对TGF-β伤口反应信号的动态特性的影响; 3)剖析和表征运动细胞中TACE活性和EGFR信号活性之间阳性反馈的机制。如果成功,拟议的研究将提供一个一般框架,以分析生长因素和机械信号的协同作用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
XUEDONG LIU其他文献
XUEDONG LIU的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('XUEDONG LIU', 18)}}的其他基金
Neuron Specific mRNA Transfer With Fusogenic Microvesicles
使用融合微泡进行神经元特异性 mRNA 转移
- 批准号:
10578732 - 财政年份:2022
- 资助金额:
$ 38.44万 - 项目类别:
Programmable Microvesicles for Intracellular Macromolecule Delivery
用于细胞内大分子递送的可编程微泡
- 批准号:
10350387 - 财政年份:2022
- 资助金额:
$ 38.44万 - 项目类别:
Programmable Microvesicles for Intracellular Macromolecule Delivery
用于细胞内大分子递送的可编程微泡
- 批准号:
10544761 - 财政年份:2022
- 资助金额:
$ 38.44万 - 项目类别:
Programmable Microvesicles for Intracellular Macromolecule Delivery
用于细胞内大分子递送的可编程微泡
- 批准号:
10798752 - 财政年份:2022
- 资助金额:
$ 38.44万 - 项目类别:
Development of a Gectosome Therapy for Cardiovascular Diseases
心血管疾病的基因组疗法的开发
- 批准号:
10384422 - 财政年份:2022
- 资助金额:
$ 38.44万 - 项目类别:
Neuron Specific mRNA Transfer With Fusogenic Microvesicles
使用融合微泡进行神经元特异性 mRNA 转移
- 批准号:
10451377 - 财政年份:2022
- 资助金额:
$ 38.44万 - 项目类别:
Programmable Microvesicles for Intracellular Macromolecule Delivery
用于细胞内大分子递送的可编程微泡
- 批准号:
10676021 - 财政年份:2022
- 资助金额:
$ 38.44万 - 项目类别:
Quantitative Analysis of Mechanochemical Signaling in Wound Response
伤口反应中机械化学信号的定量分析
- 批准号:
9303654 - 财政年份:2016
- 资助金额:
$ 38.44万 - 项目类别:
Quantitative Analysis of Mechanochemical Signaling in Wound Response
伤口反应中机械化学信号的定量分析
- 批准号:
8913630 - 财政年份:2015
- 资助金额:
$ 38.44万 - 项目类别:
相似国自然基金
基于高速原子力显微镜的Gasdermin成孔蛋白打孔机理及动力学研究
- 批准号:32371525
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
分子间非共价键的原子力显微镜成像机制研究
- 批准号:22372048
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
基于原子力显微镜探讨肝纤维化动态进展中黏弹性生物力学基础
- 批准号:82202191
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
大气细颗粒物中纳米微塑料的原子力显微镜-拉曼成像鉴定及污染特征分析
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:
大气细颗粒物中纳米微塑料的原子力显微镜—拉曼成像鉴定及污染特征分析
- 批准号:22106129
- 批准年份:2021
- 资助金额:24.00 万元
- 项目类别:青年科学基金项目
相似海外基金
Biomimetic Vascular Matrix for Vascular Smooth Muscle Cell Mechanobiology and Pathology
用于血管平滑肌细胞力学生物学和病理学的仿生血管基质
- 批准号:
10586599 - 财政年份:2023
- 资助金额:
$ 38.44万 - 项目类别:
In situ and real-time readout of nuclear mechanotransduction via single cell mechanics and site-specific fluorescence reporting
通过单细胞力学和位点特异性荧光报告原位实时读出核力转导
- 批准号:
10745440 - 财政年份:2023
- 资助金额:
$ 38.44万 - 项目类别:
Dissecting the Acid Ceramidase Pathway in Hepatic Fibrogenesis
剖析肝纤维形成中的酸性神经酰胺酶途径
- 批准号:
10736680 - 财政年份:2023
- 资助金额:
$ 38.44万 - 项目类别:
Mechanism underlying cofactor-dependent proteolysis of von Willebrand Factor
冯维勒布兰德因子辅因子依赖性蛋白水解的机制
- 批准号:
10376469 - 财政年份:2022
- 资助金额:
$ 38.44万 - 项目类别:
Reverse Engineering the Extracellular Neighborhood to Support the Functional Tissue Unit: A Use Case to Restore Ovarian Function
对细胞外邻域进行逆向工程以支持功能组织单位:恢复卵巢功能的用例
- 批准号:
10530993 - 财政年份:2022
- 资助金额:
$ 38.44万 - 项目类别: