Enhancing Organism Based Disease Knowledge Via Name Based Taxonomic Intelligence
通过基于名称的分类智能增强基于生物体的疾病知识
基本信息
- 批准号:7691697
- 负责人:
- 金额:$ 34.43万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-09-30 至 2011-09-29
- 项目状态:已结题
- 来源:
- 关键词:Advanced DevelopmentAlgorithmsAnimalsAntibiotic ResistanceArchitectureBacterial InfectionsBenchmarkingBiodiversityCollaborationsCommunicable DiseasesCommunitiesContainmentControlled VocabularyData SourcesDatabasesDevelopmentDiseaseDisease OutbreaksDisease VectorsEcologyEducational workshopEmerging Communicable DiseasesEnvironmentEpidemiologyEtiologyEventGenbankGoalsHealthHealth PolicyHumanIncidenceInformaticsInformation ManagementInformation RetrievalInformation Retrieval SystemsIntelligenceInternetKnowledgeLeadLinkLocationMeSH ThesaurusMedical ResearchMetadataMethodsMolecularMutateNamesNational Institute of Allergy and Infectious DiseaseOntologyOrganismPolicy MakingProcessPublic HealthRelative (related person)ReportingResearchResearch InfrastructureResourcesRetrievalServicesSocietiesSourceStatistical MethodsStressStructureSyndromeSystemTaxonomyTechniquesTestingVaccinationVector-transmitted infectious diseaseViralVocabularybasebeneficiarybiomedical ontologybiomedical resourceimprovedindexingopen sourcepathogenprophylacticrepositorysuccesstool
项目摘要
DESCRIPTION (provided by applicant):
The health of Human society is unmistakably intertwined with the health of the Earth and her inhabitants. As modern society becomes increasingly global, unprecedented stresses are placed on interdependent ecologies. Nowhere is this more apparent than with increased incidences of emerging infectious diseases, which include vector-borne diseases, increasingly antibiotic-resistant bacterial infections, and rapidly mutating viral syndromes. To better understand the ecology and etiology of zoonotic (animal to human) emerging infectious diseases, there is a significant need to integrate biomedical and biodiversity knowledge. As demonstrated by the success of Medline and its usage of the MeSH vocabulary, the incorporation of scientific controlled vocabularies in the information retrieval process can facilitate the identification of relevant information. We propose to develop and use informatics techniques to bridge biomedical and biodiversity information into a single resource that will enable the linkage of previously unconnected information that might be useful for the study of infectious diseases. Specifically, we aim to (1) develop a taxonomy ontology and incorporate emerging environment and geo-location ontologies for the annotation of biomedical and biodiversity information into a structured repository; (2) index information from several currently non-linked biomedical and biodiversity knowledge sources using statistical methods that are anchored in organism, environment, and geo-location information; and, (3) evaluate the utility of linking biomedical and biodiversity information relative to emerging animal-to- human infectious diseases. Through regular collaboration events, such as annual workshops, the proposed research will continually evaluate the value of the deliverables and findings with a team of experts and potential beneficiaries from around the world.
描述(由申请人提供):
人类社会的健康无疑与地球及其居民的健康交织在一起。随着现代社会日益全球化,相互依存的生态系统受到前所未有的压力。随着新出现的传染病发病率的增加,这一点最为明显,其中包括病媒传播的疾病、日益耐药的细菌感染和迅速变异的病毒综合征。为了更好地了解人畜共患(动物对人类)新出现的传染病的生态学和病原学,有必要整合生物医学和生物多样性知识。正如Medline的成功及其对MESH词汇的使用所表明的那样,在信息检索过程中纳入科学控制词汇可以促进相关信息的识别。我们建议开发和使用信息学技术,将生物医学和生物多样性信息连接成一个单一的资源,使以前不相关的信息能够联系起来,这些信息可能对传染病研究有用。具体地说,我们的目标是(1)开发一个分类本体,并将用于注释生物医学和生物多样性信息的新兴环境和地理位置本体纳入结构化储存库;(2)使用以生物、环境和地理位置信息为基础的统计方法,索引来自几个目前未关联的生物医学和生物多样性知识来源的信息;以及,(3)评估将生物医学和生物多样性信息与新出现的动物对人类传染病相关的链接的效用。通过定期协作活动,如年度讲习班,拟议的研究将与来自世界各地的专家小组和潜在受益者一起,不断评估交付成果和调查结果的价值。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
INDRA N SARKAR其他文献
INDRA N SARKAR的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('INDRA N SARKAR', 18)}}的其他基金
New Paths for Biomedical Informatics: A Mini-Symposium for High School Scholars
生物医学信息学的新路径:高中学者小型研讨会
- 批准号:
10609212 - 财政年份:2016
- 资助金额:
$ 34.43万 - 项目类别:
Enhancing Organism Based Disease Knowledge Via Name Based Taxonomic Intelligence
通过基于名称的分类智能增强基于生物体的疾病知识
- 批准号:
7939675 - 财政年份:2008
- 资助金额:
$ 34.43万 - 项目类别:
相似海外基金
Reconstruction algorithms for time-domain diffuse optical tomography imaging of small animals
小动物时域漫射光学断层成像重建算法
- 批准号:
RGPIN-2015-05926 - 财政年份:2019
- 资助金额:
$ 34.43万 - 项目类别:
Discovery Grants Program - Individual
Reconstruction algorithms for time-domain diffuse optical tomography imaging of small animals
小动物时域漫射光学断层成像重建算法
- 批准号:
RGPIN-2015-05926 - 财政年份:2018
- 资助金额:
$ 34.43万 - 项目类别:
Discovery Grants Program - Individual
Reconstruction algorithms for time-domain diffuse optical tomography imaging of small animals
小动物时域漫射光学断层成像重建算法
- 批准号:
RGPIN-2015-05926 - 财政年份:2017
- 资助金额:
$ 34.43万 - 项目类别:
Discovery Grants Program - Individual
Reconstruction algorithms for time-domain diffuse optical tomography imaging of small animals
小动物时域漫射光学断层成像重建算法
- 批准号:
RGPIN-2015-05926 - 财政年份:2016
- 资助金额:
$ 34.43万 - 项目类别:
Discovery Grants Program - Individual
Event detection algorithms in decision support for animals health surveillance
动物健康监测决策支持中的事件检测算法
- 批准号:
385453-2009 - 财政年份:2015
- 资助金额:
$ 34.43万 - 项目类别:
Collaborative Research and Development Grants
Algorithms to generate designs of potency experiments that use far fewer animals
生成使用更少动物的效力实验设计的算法
- 批准号:
8810865 - 财政年份:2015
- 资助金额:
$ 34.43万 - 项目类别:
Reconstruction algorithms for time-domain diffuse optical tomography imaging of small animals
小动物时域漫射光学断层成像重建算法
- 批准号:
RGPIN-2015-05926 - 财政年份:2015
- 资助金额:
$ 34.43万 - 项目类别:
Discovery Grants Program - Individual
Event detection algorithms in decision support for animals health surveillance
动物健康监测决策支持中的事件检测算法
- 批准号:
385453-2009 - 财政年份:2013
- 资助金额:
$ 34.43万 - 项目类别:
Collaborative Research and Development Grants
Development of population-level algorithms for modelling genomic variation and its impact on cellular function in animals and plants
开发群体水平算法来建模基因组变异及其对动植物细胞功能的影响
- 批准号:
FT110100972 - 财政年份:2012
- 资助金额:
$ 34.43万 - 项目类别:
ARC Future Fellowships
Advanced computational algorithms for brain imaging studies of freely moving animals
用于自由活动动物脑成像研究的先进计算算法
- 批准号:
DP120103813 - 财政年份:2012
- 资助金额:
$ 34.43万 - 项目类别:
Discovery Projects














{{item.name}}会员




