Regulation of Cohesive Cell Migration in Drosophila Embryogenesis
果蝇胚胎发生中粘性细胞迁移的调控
基本信息
- 批准号:7575817
- 负责人:
- 金额:$ 30.24万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-03-01 至 2013-02-28
- 项目状态:已结题
- 来源:
- 关键词:AdhesionsBiological ModelsBiological ProcessCell DeathCell ProliferationCell physiologyCell surfaceCell-Cell AdhesionCellsDistalDown-RegulationDrosophila genusDrosophila melanogasterE-CadherinEmbryoEmbryonic DevelopmentEpithelialEpithelial CellsEpitheliumEventFamilyFilopodiaGenesGeneticGenetic ScreeningGlandGoalsGuanosine Triphosphate PhosphohydrolasesHumanImaging TechniquesImpaired wound healingIntegrinsInvertebratesKnowledgeLearningLifeMammalian CellMediatingMembraneMesodermMesoderm CellModelingMonomeric GTP-Binding ProteinsNeoplasm MetastasisNeuronsOrganOrganismPathologic ProcessesPlayProcessRegulationRoleSalivary GlandsSignal TransductionSystemTestingTimeTissuesTumor Cell InvasionVisceralWound Healingbasecancer cellcell motilityembryo cellgenetic manipulationhuman migrationinsightmigrationnovelpreventrhorho GTP-Binding Proteinstherapy designtumortumor progression
项目摘要
DESCRIPTION (provided by applicant): Cell migration is essential for embryonic development, wound healing processes and pathological conditions such as tumor metastasis. An understanding of the mechanism by which cells migrate cohesively in a directed manner will provide fundamental insights into the formation of tissues and organs and will help us understand how these mechanisms are applied during wound healing and go awry during cancer progression. We have developed a simple model system to study cohesive cell migration using the fruit fly Drosophila. In Drosophila, the combination of reverse and forward genetic approaches with the ability to study cell migration in an intact organism in real time allows us to identify genes involved in this process and understand the precise roles they play in cell migration. Due to the conservation of signaling networks between humans and invertebrate organisms, results of these studies can be applied to migration of human cells. Studies using cultured mammalian cells have revealed the mechanism by which single cells migrate in culture. Our current challenge is to understand whether such mechanisms also apply to cohesive cell migration and how cohesive cell migration differs from single cell migration. Here we focus on two unanswered questions concerning cohesive cell migration; 1) how adhesion of migrating epithelial cells to the substratum is coordinated with cell-cell adhesion between cells and 2) how polarity is generated within the migrating cluster for net directed migration. Our first specific aim is to test the hypothesis that integrin-mediated adhesion between the migrating epithelial cells and the mesodermal cells upon which they migrate guide the initial migratory path of the epithelia by activating the small GTPase Rac. Our second aim is to test the hypothesis that Rac mediates migration of the advancing front and contraction of the rear of the epithelium. In our third and fourth aims we will identify and characterize two novel genes identified in a forward genetics screen for their roles in integrin-mediated adhesion during cohesive cell migration. Cell migration is essential for embryonic development, wound healing and tumor metastasis. We propose to study how cells migrate cohesively in the embryo so that we can apply our knowledge to design therapies to expedite or delay wound healing and prevent migration and invasion of cancer cells.
描述(由申请人提供):细胞迁移对胚胎发育、伤口愈合过程和肿瘤转移等病理条件是必不可少的。理解细胞定向凝聚迁移的机制将为组织和器官的形成提供基本的见解,并将帮助我们理解这些机制如何应用于伤口愈合和癌症进展过程中的错误。我们开发了一个简单的模型系统来研究果蝇的粘性细胞迁移。在果蝇中,反向和正向遗传方法的结合,以及实时研究完整有机体中细胞迁移的能力,使我们能够识别参与这一过程的基因,并了解它们在细胞迁移中扮演的确切角色。由于人类和无脊椎动物之间的信号网络的保守性,这些研究的结果可以应用于人类细胞的迁移。利用培养的哺乳动物细胞进行的研究揭示了单个细胞在培养中迁移的机制。我们目前的挑战是了解这种机制是否也适用于凝聚细胞迁移,以及凝聚细胞迁移与单细胞迁移有何不同。在这里,我们关注两个关于粘附性细胞迁移的悬而未决的问题:1)迁移上皮细胞与基质的粘附性如何与细胞间的粘附性相协调;2)迁移簇内如何产生用于净定向迁移的极性。我们的第一个特定目标是验证这样一个假设,即整合素介导的迁移上皮细胞和它们迁移到的中胚层细胞之间的黏附通过激活小GTPase Rac来引导上皮细胞的初始迁移路径。我们的第二个目标是验证RAC介导上皮前部迁移和后部收缩的假设。在我们的第三个和第四个目标中,我们将识别和表征两个在正向遗传学筛查中识别的新基因,以确定它们在粘性细胞迁移过程中整合素介导的黏附中的作用。细胞迁移对胚胎发育、伤口愈合和肿瘤转移至关重要。我们建议研究细胞如何在胚胎中凝聚迁移,以便我们可以应用我们的知识来设计治疗方法,以加速或推迟伤口愈合,防止癌细胞的迁移和侵袭。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MONN MONN MYAT其他文献
MONN MONN MYAT的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MONN MONN MYAT', 18)}}的其他基金
Regulation of Cohesive Cell Migration in Drosophila Embryogenesis
果蝇胚胎发生中粘性细胞迁移的调控
- 批准号:
7351697 - 财政年份:2008
- 资助金额:
$ 30.24万 - 项目类别:
Regulation of Cohesive Cell Migration in Drosophila Embryogenesis
果蝇胚胎发生中粘性细胞迁移的调控
- 批准号:
7776882 - 财政年份:2008
- 资助金额:
$ 30.24万 - 项目类别:
Regulation of Cohesive Cell Migration in Drosophila Embryogenesis
果蝇胚胎发生中粘性细胞迁移的调控
- 批准号:
8231506 - 财政年份:2008
- 资助金额:
$ 30.24万 - 项目类别:
Regulation of Cohesive Cell Migration in Drosophila Embryogenesis
果蝇胚胎发生中粘性细胞迁移的调控
- 批准号:
8033699 - 财政年份:2008
- 资助金额:
$ 30.24万 - 项目类别:
相似海外基金
Nonlocal Variational Problems from Physical and Biological Models
物理和生物模型的非局部变分问题
- 批准号:
2306962 - 财政年份:2023
- 资助金额:
$ 30.24万 - 项目类别:
Standard Grant
Point-of-care optical spectroscopy platform and novel ratio-metric algorithms for rapid and systematic functional characterization of biological models in vivo
即时光学光谱平台和新颖的比率度量算法,可快速、系统地表征体内生物模型的功能
- 批准号:
10655174 - 财政年份:2023
- 资助金额:
$ 30.24万 - 项目类别:
Multi-scale stochastic systems motivated by biological models
由生物模型驱动的多尺度随机系统
- 批准号:
RGPIN-2015-06573 - 财政年份:2022
- 资助金额:
$ 30.24万 - 项目类别:
Discovery Grants Program - Individual
Micro-electrofluidic platforms for monitoring 3D human biological models
用于监测 3D 人体生物模型的微电流体平台
- 批准号:
DP220102872 - 财政年份:2022
- 资助金额:
$ 30.24万 - 项目类别:
Discovery Projects
Multi-scale stochastic systems motivated by biological models
由生物模型驱动的多尺度随机系统
- 批准号:
RGPIN-2015-06573 - 财政年份:2021
- 资助金额:
$ 30.24万 - 项目类别:
Discovery Grants Program - Individual
Multi-scale stochastic systems motivated by biological models
由生物模型驱动的多尺度随机系统
- 批准号:
RGPIN-2015-06573 - 财政年份:2020
- 资助金额:
$ 30.24万 - 项目类别:
Discovery Grants Program - Individual
Harnessing machine learning and cloud computing to test biological models of the role of white matter in human learning
利用机器学习和云计算来测试白质在人类学习中的作用的生物模型
- 批准号:
2004877 - 财政年份:2020
- 资助金额:
$ 30.24万 - 项目类别:
Fellowship Award
A Portable low-cost, Point of Investigation CapCell Scope to Image and Quantify the Major Axes of Metabolism and the Associated Vasculature in In vitro and In vivo Biological Models
便携式低成本调查点 CapCell 示波器,用于对体外和体内生物模型中的主要代谢轴和相关脉管系统进行成像和量化
- 批准号:
9899988 - 财政年份:2019
- 资助金额:
$ 30.24万 - 项目类别:
Multi-scale stochastic systems motivated by biological models
由生物模型驱动的多尺度随机系统
- 批准号:
RGPIN-2015-06573 - 财政年份:2019
- 资助金额:
$ 30.24万 - 项目类别:
Discovery Grants Program - Individual
A Portable low-cost, Point of Investigation CapCell Scope to Image and Quantify the Major Axes of Metabolism and the Associated Vasculature in In vitro and In vivo Biological Models
便携式低成本调查点 CapCell 示波器,用于对体外和体内生物模型中的主要代谢轴和相关脉管系统进行成像和量化
- 批准号:
9753458 - 财政年份:2019
- 资助金额:
$ 30.24万 - 项目类别: